ﻻ يوجد ملخص باللغة العربية
Many objects do not appear frequently enough in complex scenes (e.g., certain handbags in living rooms) for training an accurate object detector, but are often found frequently by themselves (e.g., in product images). Yet, these object-centric images are not effectively leveraged for improving object detection in scene-centric images. In this paper, we propose Mosaic of Object-centric images as Scene-centric images (MosaicOS), a simple and novel framework that is surprisingly effective at tackling the challenges of long-tailed object detection. Keys to our approach are three-fold: (i) pseudo scene-centric image construction from object-centric images for mitigating domain differences, (ii) high-quality bounding box imputation using the object-centric images class labels, and (iii) a multi-stage training procedure. On LVIS object detection (and instance segmentation), MosaicOS leads to a massive 60% (and 23%) relative improvement in average precision for rare object categories. We also show that our framework can be compatibly used with other existing approaches to achieve even further gains. Our pre-trained models are publicly available at https://github.com/czhang0528/MosaicOS/.
The conventional detectors tend to make imbalanced classification and suffer performance drop, when the distribution of the training data is severely skewed. In this paper, we propose to use the mean classification score to indicate the classificatio
Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re-weighting. I
Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. Howev
Semi-supervised learning (SSL) has a potential to improve the predictive performance of machine learning models using unlabeled data. Although there has been remarkable recent progress, the scope of demonstration in SSL has mainly been on image class
This paper presents a Simple and effective unsupervised adaptation method for Robust Object Detection (SimROD). To overcome the challenging issues of domain shift and pseudo-label noise, our method integrates a novel domain-centric augmentation metho