ﻻ يوجد ملخص باللغة العربية
Let $G$ be a graph on $n$ nodes. In the stochastic population protocol model, a collection of $n$ indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first read each others states, and then update their local states. A rich line of research has established tight upper and lower bounds on the complexity of fundamental tasks, such as majority and leader election, in this model, when $G$ is a clique. Specifically, in the clique, these tasks can be solved fast, i.e., in $n operatorname{polylog} n$ pairwise interactions, with high probability, using at most $operatorname{polylog} n$ states per node. In this work, we consider the more general setting where $G$ is an arbitrary graph, and present a technique for simulating protocols designed for fully-connected networks in any connected regular graph. Our main result is a simulation that is efficient on many interesting graph families: roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance of the graph. As a sample application, we show that, in any regular graph with conductance $phi$, both leader election and exact majority can be solved in $phi^{-2} cdot n operatorname{polylog} n$ pairwise interactions, with high probability, using at most $phi^{-2} cdot operatorname{polylog} n$ states per node. This shows that there are fast and space-efficient population protocols for leader election and exact majority on graphs with good expansion properties. We believe our results will prove generally useful, as they allow efficient technology transfer between the well-mixed (clique) case, and the under-explored spatial setting.
Over the years, population protocols with the goal of reaching consensus have been studied in great depth. However, many systems in the real-world do not result in all agents eventually reaching consensus, but rather in the opposite: they converge to
Motivated, in part, by the rise of permissionless systems such as Bitcoin where arbitrary nodes (whose identities are not known apriori) can join and leave at will, we extend established research in scalable Byzantine agreement to a more practical mo
We present a new version of Peregrine, the tool for the analysis and parameterized verification of population protocols introduced in [Blondin et al., CAV2018]. Population protocols are a model of computation, intensely studied by the distributed com
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-dynamic setting, in which *arbitrarily many* edge changes may occur in each round. Our algorithm significantly improves upon prior work in its combina