ﻻ يوجد ملخص باللغة العربية
Motivated, in part, by the rise of permissionless systems such as Bitcoin where arbitrary nodes (whose identities are not known apriori) can join and leave at will, we extend established research in scalable Byzantine agreement to a more practical model where each node (initially) does not know the identity of other nodes. A node can send to new destinations only by sending to random (or arbitrary) nodes, or responding (if it chooses) to messages received from those destinations. We assume a synchronous and fully-connected network, with a full-information, but static Byzantine adversary. A general drawback of existing Byzantine protocols is that the communication cost incurred by the honest nodes may not be proportional to those incurred by the Byzantine nodes; in fact, they can be significantly higher. Our goal is to design Byzantine protocols for fundamental problems which are {em resource competitive}, i.e., the number of bits sent by honest nodes is not much more than those sent by Byzantine nodes. We describe a randomized scalable algorithm to solve Byzantine agreement, leader election, and committee election in this model. Our algorithm sends an expected $O((T+n)log n)$ bits and has latency $O(polylog(n))$, where $n$ is the number of nodes, and $T$ is the minimum of $n^2$ and the number of bits sent by adversarially controlled nodes. The algorithm is resilient to $(1/4-epsilon)n$ Byzantine nodes for any fixed $epsilon > 0$, and succeeds with high probability. Our work can be considered as a first application of resource-competitive analysis to fundamental Byzantine problems. To complement our algorithm we also show lower bounds for resource-competitive Byzantine agreement. We prove that, in general, one cannot hope to design Byzantine protocols that have communication cost that is significantly smaller than the cost of the Byzantine adversary.
Let $G$ be a graph on $n$ nodes. In the stochastic population protocol model, a collection of $n$ indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first r
We consider the problem of computing an aggregation function in a emph{secure} and emph{scalable} way. Whereas previous distributed solutions with similar security guarantees have a communication cost of $O(n^3)$, we present a distributed protocol th
The notion of knowledge-based program introduced by Halpern and Fagin provides a useful formalism for designing, analysing, and optimising distributed systems. This paper formulates the two phase commit protocol as a knowledge-based program and then
In this paper, we consider the Byzantine reliable broadcast problem on authenticated and partially connected networks. The state-of-the-art method to solve this problem consists in combining two algorithms from the literature. Handling asynchrony and
Blockchain protocols differ in fundamental ways, including the mechanics of selecting users to produce blocks (e.g., proof-of-work vs. proof-of-stake) and the method to establish consensus (e.g., longest chain rules vs. BFT-inspired protocols). These