ترغب بنشر مسار تعليمي؟ اضغط هنا

Using exoskeletons to assist medical staff during prone positioning of mechanically ventilated COVID-19 patients: a pilot study

239   0   0.0 ( 0 )
 نشر من قبل Serena Ivaldi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Serena Ivaldi




اسأل ChatGPT حول البحث

We conducted a pilot study to evaluate the potential and feasibility of back-support exoskeletons to help the caregivers in the Intensive Care Unit (ICU) of the University Hospital of Nancy (France) executing Prone Positioning (PP) maneuvers on patients suffering from severe COVID-19-related Acute Respiratory Distress Syndrome. After comparing four commercial exoskeletons, the Laevo passive exoskeleton was selected and used in the ICU in April 2020. The first volunteers using the Laevo reported very positive feedback and reduction of effort, confirmed by EMG and ECG analysis. Laevo has been since used to physically assist during PP in the ICU of the Hospital of Nancy, following the recrudescence of COVID-19, with an overall positive feedback.

قيم البحث

اقرأ أيضاً

Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data. The consequence on clinical practice is that, when lacking results from a randomiz ed trial, medical personnel is left without guidance on what seems to be effective in a real-world scenario. This article showcases a pragmatic methodology to obtain preliminary estimation of treatment effect from observational studies. Our approach was tested on the estimation of treatment effect of the proning maneuver on oxygenation levels, on a cohort of COVID-19 Intensive Care patients. We modeled our study design on a recent RCT for proning (the PROSEVA trial). Linear regression, propensity score models such as blocking and DR-IPW, BART and t
Nasopharyngeal (NP) swab sampling is an effective approach for the diagnosis of coronavirus disease 2019 (COVID-19). Medical staffs carrying out the task of collecting NP specimens are in close contact with the suspected patient, thereby posing a hig h risk of cross-infection. We propose a low-cost miniature robot that can be easily assembled and remotely controlled. The system includes an active end-effector, a passive positioning arm, and a detachable swab gripper with integrated force sensing capability. The cost of the materials for building this robot is 55 USD and the total weight of the functional part is 0.23kg. The design of the force sensing swab gripper was justified using Finite Element (FE) modeling and the performances of the robot were validated with a simulation phantom and three pig noses. FE analysis indicated a 0.5mm magnitude displacement of the grippers sensing beam, which meets the ideal detecting range of the optoelectronic sensor. Studies on both the phantom and the pig nose demonstrated the successful operation of the robot during the collection task. The average forces were found to be 0.35N and 0.85N, respectively. It is concluded that the proposed robot is promising and could be further developed to be used in vivo.
Nursing homes and other long term-care facilities account for a disproportionate share of COVID-19 cases and fatalities worldwide. Outbreaks in U.S. nursing homes have persisted despite nationwide visitor restrictions beginning in mid-March. An early report issued by the Centers for Disease Control and Prevention identified staff members working in multiple nursing homes as a likely source of spread from the Life Care Center in Kirkland, Washington to other skilled nursing facilities. The full extent of staff connections between nursing homes---and the crucial role these connections serve in spreading a highly contagious respiratory infection---is currently unknown given the lack of centralized data on cross-facility nursing home employment. In this paper, we perform the first large-scale analysis of nursing home connections via shared staff using device-level geolocation data from 30 million smartphones, and find that 7 percent of smartphones appearing in a nursing home also appeared in at least one other facility---even after visitor restrictions were imposed. We construct network measures of nursing home connectedness and estimate that nursing homes have, on average, connections with 15 other facilities. Controlling for demographic and other factors, a homes staff-network connections and its centrality within the greater network strongly predict COVID-19 cases. Traditional federal regulatory metrics of nursing home quality are unimportant in predicting outbreaks, consistent with recent research. Results suggest that eliminating staff linkages between nursing homes could reduce COVID-19 infections in nursing homes by 44 percent.
134 - Yingbai Hu , Jian Li (1 2021
The outbreak of novel coronavirus pneumonia (COVID-19) has caused mortality and morbidity worldwide. Oropharyngeal-swab (OP-swab) sampling is widely used for the diagnosis of COVID-19 in the world. To avoid the clinical staff from being affected by t he virus, we developed a 9-degree-of-freedom (DOF) rigid-flexible coupling (RFC) robot to assist the COVID-19 OP-swab sampling. This robot is composed of a visual system, UR5 robot arm, micro-pneumatic actuator and force-sensing system. The robot is expected to reduce risk and free up the clinical staff from the long-term repetitive sampling work. Compared with a rigid sampling robot, the developed force-sensing RFC robot can facilitate OP-swab sampling procedures in a safer and softer way. In addition, a varying-parameter zeroing neural network-based optimization method is also proposed for motion planning of the 9-DOF redundant manipulator. The developed robot system is validated by OP-swab sampling on both oral cavity phantoms and volunteers.
From global pandemics to geopolitical turmoil, leaders in logistics, product allocation, procurement and operations are facing increasing difficulty with safeguarding their organizations against supply chain vulnerabilities. It is recommended to opt for forecasting against trending based benchmark because auditing a future forecast puts more focus on seasonality. The forecasting models provide with end-to-end, real time oversight of the entire supply chain, while utilizing predictive analytics and artificial intelligence to identify potential disruptions before they occur. By combining internal and external data points, coming up with an AI-enabled modelling engine can greatly reduce risk by helping retail companies proactively respond to supply and demand variability. This research paper puts focus on creating an ingenious way to tackle the impact of COVID19 on Supply chain, product allocation, trending and seasonality. Key words: Supply chain, covid-19, forecasting, coronavirus, manufacturing, seasonality, trending, retail.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا