ﻻ يوجد ملخص باللغة العربية
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Herein, we show the atomic arrangement of strong network forming GeO2 glass is modified at medium range (< 2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show the population of 6-membered GeO4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than post-growth annealing in modifying atomic structure at medium range. The enhanced medium range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.
Glass films created by vapor-depositing molecules onto a substrate can exhibit properties similar to those of ordinary glasses aged for thousands of years. It is believed that enhanced surface mobility is the mechanism that allows vapor deposition to
In-situ NMR spin-lattice relaxation measurements were performed on several vapor deposited ices. The measurements, which span more than 6 orders of magnitude in relaxation times, show a complex spin-lattice relaxation pattern that is strongly depende
Understanding the damping mechanism in finite size systems and its dependence on temperature is a critical step in the development of magnetic nanotechnologies. In this work, nano-sized materials are modeled via atomistic spin dynamics, the damping p
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal f
Large-area two-dimensional (2D) materials for technical applications can now be produced by chemical vapor deposition (CVD). Unfortunately, grain boundaries (GBs) are ubiquitously introduced as a result of the coalescence of grains with different cry