ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information

145   0   0.0 ( 0 )
 نشر من قبل Pranjal Awasthi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Training and evaluation of fair classifiers is a challenging problem. This is partly due to the fact that most fairness metrics of interest depend on both the sensitive attribute information and label information of the data points. In many scenarios it is not possible to collect large datasets with such information. An alternate approach that is commonly used is to separately train an attribute classifier on data with sensitive attribute information, and then use it later in the ML pipeline to evaluate the bias of a given classifier. While such decoupling helps alleviate the problem of demographic scarcity, it raises several natural questions such as: how should the attribute classifier be trained?, and how should one use a given attribute classifier for accurate bias estimation? In this work we study this question from both theoretical and empirical perspectives. We first experimentally demonstrate that the test accuracy of the attribute classifier is not always correlated with its effectiveness in bias estimation for a downstream model. In order to further investigate this phenomenon, we analyze an idealized theoretical model and characterize the structure of the optimal classifier. Our analysis has surprising and counter-intuitive implications where in certain regimes one might want to distribute the error of the attribute classifier as unevenly as possible among the different subgroups. Based on our analysis we develop heuristics for both training and using attribute classifiers for bias estimation in the data scarce regime. We empirically demonstrate the effectiveness of our approach on real and simulated data.



قيم البحث

اقرأ أيضاً

If our models are used in new or unexpected cases, do we know if they will make fair predictions? Previously, researchers developed ways to debias a model for a single problem domain. However, this is often not how models are trained and used in prac tice. For example, labels and demographics (sensitive attributes) are often hard to observe, resulting in auxiliary or synthetic data to be used for training, and proxies of the sensitive attribute to be used for evaluation of fairness. A model trained for one setting may be picked up and used in many others, particularly as is common with pre-training and cloud APIs. Despite the pervasiveness of these complexities, remarkably little work in the fairness literature has theoretically examined these issues. We frame all of these settings as domain adaptation problems: how can we use what we have learned in a source domain to debias in a new target domain, without directly debiasing on the target domain as if it is a completely new problem? We offer new theoretical guarantees of improving fairness across domains, and offer a modeling approach to transfer to data-sparse target domains. We give empirical results validating the theory and showing that these modeling approaches can improve fairness metrics with less data.
Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has become a topic of increasing social concern and has recently witnessed an explosion of research in theoretical computer science, machine learning, stat istics, the social sciences, and law. Much of the literature considers the case of a single classifier (or scoring function) used once, in isolation. In this work, we initiate the study of the fairness properties of systems composed of algorithms that are fair in isolation; that is, we study fairness under composition. We identify pitfalls of naive composition and give general constructions for fair composition, demonstrating both that classifiers that are fair in isolation do not necessarily compose into fair systems and also that seemingly unfair components may be carefully combined to construct fair systems. We focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold, Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in the recent literature, exhibiting several cases in which group fairness definitions give misleading signals under composition.
Many machine learning systems make extensive use of large amounts of data regarding human behaviors. Several researchers have found various discriminatory practices related to the use of human-related machine learning systems, for example in the fiel d of criminal justice, credit scoring and advertising. Fair machine learning is therefore emerging as a new field of study to mitigate biases that are inadvertently incorporated into algorithms. Data scientists and computer engineers are making various efforts to provide definitions of fairness. In this paper, we provide an overview of the most widespread definitions of fairness in the field of machine learning, arguing that the ideas highlighting each formalization are closely related to different ideas of justice and to different interpretations of democracy embedded in our culture. This work intends to analyze the definitions of fairness that have been proposed to date to interpret the underlying criteria and to relate them to different ideas of democracy.
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positiv e rates across protected groups), but then asks that this constraint hold over an exponentially or infinitely large collection of subgroups defined by a class of functions with bounded VC dimension. They give an algorithm guaranteed to learn subject to this constraint, under the condition that it has access to oracles for perfectly learning absent a fairness constraint. In this paper, we undertake an extensive empirical evaluation of the algorithm of Kearns et al. On four real datasets for which fairness is a concern, we investigate the basic convergence of the algorithm when instantiated with fast heuristics in place of learning oracles, measure the tradeoffs between fairness and accuracy, and compare this approach with the recent algorithm of Agarwal et al. [2018], which implements weaker and more traditional marginal fairness constraints defined by individual protected attributes. We find that in general, the Kearns et al. algorithm converges quickly, large gains in fairness can be obtained with mild costs to accuracy, and that optimizing accuracy subject only to marginal fairness leads to classifiers with substantial subgroup unfairness. We also provide a number of analyses and visualizations of the dynamics and behavior of the Kearns et al. algorithm. Overall we find this algorithm to be effective on real data, and rich subgroup fairness to be a viable notion in practice.
Algorithmic risk assessments are used to inform decisions in a wide variety of high-stakes settings. Often multiple predictive models deliver similar overall performance but differ markedly in their predictions for individual cases, an empirical phen omenon known as the Rashomon Effect. These models may have different properties over various groups, and therefore have different predictive fairness properties. We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance, or the set of good models. Our framework addresses the empirically relevant challenge of selectively labelled data in the setting where the selection decision and outcome are unconfounded given the observed data features. Our framework can be used to 1) replace an existing model with one that has better fairness properties; or 2) audit for predictive bias. We illustrate these uses cases on a real-world credit-scoring task and a recidivism prediction task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا