ﻻ يوجد ملخص باللغة العربية
A Lagrangian experimental study of an axisymmetric turbulent water jet is performed to investigate the highly anisotropic and inhomogeneous flow field. The measurements were conducted within a Lagrangian exploration module, an icosahedron apparatus, to facilitate optical access of three cameras. The stereoscopic particle tracking velocimetry results in three component tracks of position, velocity and acceleration of the tracer particles within the vertically-oriented jet with a Taylor-based Reynolds number $mathcal R_lambda simeq 230$. Analysis is performed at seven locations from 15 diameters up to 45 diameters downstream. Eulerian analysis is first carried out to obtain critical parameters of the jet and relevant scales, namely the Kolmogorov and large turnover (integral) scales as well as the energy dissipation rate. Lagrangian statistical analysis is then performed on velocity components stationarised following methods inspired by Batchelor (textit{J. Fluid Mech.}, vol. 3, 1957, pp. 67-80) which aim to extend stationary Lagrangian theory of turbulent diffusion by Taylor to the case of self-similar flows. The evolution of typical Lagrangian scaling parameters as a function of the developing jet is explored and results show validation of the proposed stationarisation. The universal scaling constant $C_0$ (for the Lagrangian second-order structure function), as well as Eulerian and Lagrangian integral time scales are discussed in this context. $C_0$ is found to converge to a constant value (of the order of $C_0 = 3$) within 30 diameters downstream of the nozzle. Finally, the existence of finite particle size effects are investigated through consideration of acceleration dependent quantities.
The Lagrangian (LA) and Eulerian Acceleration (EA) properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from $Ri=0
We present Lagrangian one-particle statistics from the Risoe PTV experiment of a turbulent flow. We estimate the Lagrangian Kolmogorov constant $C_0$ and find that it is affected by the large scale inhomogeneities of the flow. The pdf of temporal vel
In this paper, we employ Lagrangian coherent structures (LCSs) theory for the three dimensional vortex eduction and investigate the effect of large-scale vortical structures on the turbulent/non-turbulent interface (TNTI) and entrainment of a gravity
A phenomenological theory of the fluctuations of velocity occurring in a fully developed homogeneous and isotropic turbulent flow is presented. The focus is made on the fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increme
Coherent turbulent wave-packet structures in a jet at Reynolds number 460000 and Mach number 0.4 are extracted from experimental measurements and are modeled as linear fluctuations around the mean flow. The linear model is based on harmonic optimal f