ﻻ يوجد ملخص باللغة العربية
A gas composed of a large number of atoms evolving according to Newtonian dynamics is often described by continuum hydrodynamics. Proving this rigorously is an outstanding open problem, and precise numerical demonstrations of the equivalence of the hydrodynamic and microscopic descriptions are rare. We test this equivalence in the context of the evolution of a blast wave, a problem that is expected to be at the limit where hydrodynamics could work. We study a one-dimensional gas at rest with instantaneous localized release of energy for which the hydrodynamic Euler equations admit a self-similar scaling solution. Our microscopic model consists of hard point particles with alternating masses, which is a nonintegrable system with strong mixing dynamics. Our extensive microscopic simulations find a remarkable agreement with Euler hydrodynamics, with deviations in a small core region that are understood as arising due to heat conduction.
A simple one-dimensional model is constructed for polymer motion. It exhibits the crossover from reptation to Rouse dynamics through gradually allowing hernia creation and annihilation. The model is treated by the density matrix technique which permi
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F
We revisit early suggestions to observe spin-charge separation (SCS) in cold-atom settings {in the time domain} by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse perturbations are initially created at the center o
Microfluidic devices manufactured from soft polymeric materials have emerged as a paradigm for cheap, disposable and easy-to-prototype fluidic platforms for integrating chemical and biological assays and analyses. The interplay between the flow force
We show that the dynamic structure factor of a one-dimensional Bose liquid has a power-law singularity defining the main mode of collective excitations. Using the Lieb-Liniger model, we evaluate the corresponding exponent as a function of the wave vector and the interaction strength.