ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Local Thermodynamic Equilibrium Radiative Transfer Simulations of Sub-Chandrasekhar-Mass White Dwarf Detonations

351   0   0.0 ( 0 )
 نشر من قبل Ken Shen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type Ia supernovae (SNe Ia) span a range of luminosities and timescales, from rapidly evolving subluminous to slowly evolving overluminous subtypes. Previous theoretical work has, for the most part, been unable to match the entire breadth of observed SNe Ia with one progenitor scenario. Here, for the first time, we apply non-local thermodynamic equilibrium radiative transfer calculations to a range of accurate explosion models of sub-Chandrasekhar-mass white dwarf detonations. The resulting photometry and spectra are in excellent agreement with the range of observed non-peculiar SNe Ia through 15 d after the time of B-band maximum, yielding one of the first examples of a quantitative match to the entire Phillips (1993) relation. The intermediate-mass element velocities inferred from theoretical spectra at maximum light for the more massive white dwarf explosions are higher than those of bright observed SNe Ia, but these and other discrepancies likely stem from the one-dimensional nature of our explosion models and will be improved upon by future non-local thermodynamic equilibrium radiation transport calculations of multi-dimensional sub-Chandrasekhar-mass white dwarf detonations.

قيم البحث

اقرأ أيضاً

Study of the double detonation Type Ia supernova scenario, in which a helium shell detonation triggers a carbon core detonation in a sub-Chandrasekhar-mass white dwarf, has experienced a resurgence in the past decade. New evolutionary scenarios and a better understanding of which nuclear reactions are essential have allowed for successful explosions in white dwarfs with much thinner helium shells than in the original, decades-old incarnation of the double detonation scenario. In this paper, we present the first suite of light curves and spectra from multi-dimensional radiative transfer calculations of thin-shell double detonation models, exploring a range of white dwarf and helium shell masses. We find broad agreement with the observed light curves and spectra of non-peculiar Type Ia supernovae, from subluminous to overluminous subtypes, providing evidence that double detonations of sub-Chandrasekhar-mass white dwarfs produce the bulk of observed Type Ia supernovae. Some discrepancies in spectral velocities and colors persist, but these may be brought into agreement by future calculations that include more accurate initial conditions and radiation transport physics.
Some simulations of Type Ia supernovae feature self-consistent thermonuclear detonations. However, these detonations are not meaningful if the simulations are not resolved, so it is important to establish the requirements for achieving a numerically converged detonation. In this study we examine a test detonation problem inspired by collisions of white dwarfs. This test problem demonstrates that achieving a converged thermonuclear ignition requires spatial resolution much finer than 1 km in the burning region. Current computational resource constraints place this stringent resolution requirement out of reach for multi-dimensional supernova simulations. Consequently, contemporary simulations that self-consistently demonstrate detonations are possibly not converged and should be treated with caution.
There are two classes of viable progenitors for normal Type Ia supernovae (SNe Ia): systems in which a white dwarf explodes at the Chandrasekhar mass ($M_{ch}$), and systems in which a white dwarf explodes below the Chandrasekhar mass (sub-$M_{ch}$). It is not clear which of these channels is dominant; observations and light curve modeling have provided evidence for both. Here we use an extensive grid of 4500 time-dependent, multiwavelength radiation transport simulations to show that the sub-$M_{ch}$ model can reproduce the entirety of the width-luminosity relation (WLR), while the $M_{ch}$ model can only produce the brighter events $(0.8 < Delta M_{15}(B) < 1.55)$, implying that fast-declining SNe Ia come from sub-$M_{ch}$ explosions. We do not assume a particular theoretical paradigm for the progenitor or explosion mechanism, but instead construct parameterized models that vary the mass, kinetic energy, and compositional structure of the ejecta, thereby realizing a broad range of possible outcomes of white dwarf explosions. We provide fitting functions based on our large grid of detailed simulations that map observable properties of SNe Ia such as peak brightness and light curve width to physical parameters such as $^{56}mathrm{Ni}$ and total ejected mass. These can be used to estimate the physical properties of observed SNe Ia.
After the prediction of many sub- and super-Chandrasekhar (at least a dozen for the latter) limiting mass white dwarfs, hence apparently peculiar class of white dwarfs, from the observations of luminosity of type Ia supernovae, researchers have propo sed various models to explain these two classes of white dwarfs separately. We earlier showed that these two peculiar classes of white dwarfs, along with the regular white dwarfs, can be explained by a single form of the f(R) gravity, whose effect is significant only in the high-density regime, and it almost vanishes in the low-density regime. However, since there is no direct detection of such white dwarfs, it is difficult to single out one specific theory from the zoo of modified theories of gravity. We discuss the possibility of direct detection of such white dwarfs in gravitational wave astronomy. It is well-known that in f(R) gravity, more than two polarization modes are present. We estimate the amplitudes of all the relevant modes for the peculiar as well as the regular white dwarfs. We further discuss the possibility of their detections through future-based gravitational wave detectors, such as LISA, ALIA, DECIGO, BBO, or Einstein Telescope, and thereby put constraints or rule out various modified theories of gravity. This exploration links the theory with possible observations through gravitational wave in f(R) gravity.
The recently observed diversity of Type Ia supernovae (SNe Ia) has motivated us to conduct the theoretical modeling of SNe Ia for a wide parameter range. In particular, the origin of Type Iax supernovae (SNe Iax) has been obscure. Following our earli er work on the parameter dependence of SN Ia models, we focus on SNe Iax in the present study. For a model of SNe Iax, we adopt the currently leading model of pure turbulent deflagration (PTD) of near-Chandrasekhar mass C+O white dwarfs (WDs). We carry out 2-dimensional hydrodynamical simulations of the propagation of deflagration wave, which leaves a small WD remnant behind and eject nucleosynthesis materials. We show how the explosion properties, such as nucleosynthesis and explosion energy, depend on the model parameters such as central densities and compositions of the WDs (including the hybrid WDs), and turbulent flame prescription and initial flame geometry. We extract the associated observables in our models, and compare with the recently discovered low-mass WDs with unusual surface abundance patterns and the abundance patterns of some SN remnants. We provide the nucleosynthesis yield tables for applications to stellar archaeology and galactic chemical evolution. Our results are compared with the representative models in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا