ترغب بنشر مسار تعليمي؟ اضغط هنا

Explosive Nucleosynthesis in Near-Chandrasekhar-mass White Dwarf Models for Type Iax Supernovae: Dependence on Model Parameters

84   0   0.0 ( 0 )
 نشر من قبل Shing Chi Leung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently observed diversity of Type Ia supernovae (SNe Ia) has motivated us to conduct the theoretical modeling of SNe Ia for a wide parameter range. In particular, the origin of Type Iax supernovae (SNe Iax) has been obscure. Following our earlier work on the parameter dependence of SN Ia models, we focus on SNe Iax in the present study. For a model of SNe Iax, we adopt the currently leading model of pure turbulent deflagration (PTD) of near-Chandrasekhar mass C+O white dwarfs (WDs). We carry out 2-dimensional hydrodynamical simulations of the propagation of deflagration wave, which leaves a small WD remnant behind and eject nucleosynthesis materials. We show how the explosion properties, such as nucleosynthesis and explosion energy, depend on the model parameters such as central densities and compositions of the WDs (including the hybrid WDs), and turbulent flame prescription and initial flame geometry. We extract the associated observables in our models, and compare with the recently discovered low-mass WDs with unusual surface abundance patterns and the abundance patterns of some SN remnants. We provide the nucleosynthesis yield tables for applications to stellar archaeology and galactic chemical evolution. Our results are compared with the representative models in the literature.



قيم البحث

اقرأ أيضاً

Recent observations of Type Ia supernovae (SNe Ia) have shown diversified properties of the explosion strength, light curves and chemical composition. To investigate possible origins of such diversities in SNe Ia, we have presented multi-dimensional hydrodynamical study of explosions and associated nucleosynthesis in the near Chandrasekhar mass carbon-oxygen (CO) white dwarfs (WDs) for a wide range of parameters (Leung and Nomoto 2018 ApJ). In the present paper, we extend our wide parameter survey of models to the explosions of sub-Chandrasekhar mass CO WDs. We take the double detonation model for the explosion mechanism. The model parameters of the survey include the metallicity of $Z = 0 - 5~Z_odot$, the CO WD mass of $M = 0.90 - 1.20~M_odot$, and the He envelope mass of $M_{rm He} = 0.05 - 0.20~M_odot$. We also study how the initial He detonation configuration, such as spherical, bubble, and ring shapes, triggers the C detonation. For these parameters, we derive the minimum He envelope mass necessary to trigger the C detonation. We then examine how the explosion dynamics and associated nucleosynthesis depend on these parameters, and compare our results with the previous representative models. We compare our nucleosynthesis yields with the unusual abundance patterns of Fe-peak elements and isotopes observed in SNe Ia 2011fe, 2012cg and 2014J, as well as SN Ia remnant 3C 397 to provide constraints on their progenitors and environments. We provide the nucleosynthesis yields table of the sub-Chandrasekhar mass explosions, to discuss their roles in the galactic chemical evolution and archaeology.
Due to the increasing number of observations Type Ia supernovae are nowadays regarded as a heterogeneous class of objects consisting of several subclasses. One of the largest of these is the class of Type Iax supernovae (SNe Iax) which have been sugg ested to originate from pure deflagrations in CO Chandrasekhar-mass white dwarfs (WDs). Although a few deflagration studies have been carried out, the full diversity of the class is not captured yet. We therefore present a parameter study of single-spot ignited deflagrations with varying ignition locations, central densities, metallicities and compositions. We also explore a rigidly rotating progenitor and carry out 3D hydrodynamic simulations, nuclear network calculations and radiative transfer. The new models extend the range in brightness covered by previous studies to the lower end. Our explosions produce $^{56}$Ni masses from $5.8 times 10^{-3}$ to $9.2 times 10^{-2},M_odot$. In spite of the wide exploration of the parameter space the main characteristics of the models are primarily driven by the mass of $^{56}$Ni. Secondary parameters have too little impact to explain the observed trend among faint SNe~Iax. We report kick velocities of the bound explosion remnants from $6.9$ to $369.8,$km$,s^{-1}$. The wide exploration of the parameter space and viewing-angle effects in the radiative transfer lead to a significant spread in the synthetic observables. The trends towards the faint end of the class are, however, not reproduced. This motivates a quantification of the systematic uncertainties in the modeling procedure and the influence of the $^{56}$Ni-rich bound remnant. While the pure deflagration scenario remains a favorable explanation for bright and intermediate luminosity SNe~Iax, the possibility that SNe~Iax do not consist of a single explosion scenario needs to be considered.
We present UV through NIR broad-band photometry, and optical and NIR spectroscopy of Type Iax supernova 2012Z. The data set consists of both early and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopicall y classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M_sun of (56)Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~10^51 erg, making it one of the brightest and most energetic SN Iax yet observed. The late phase NIR spectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially compared to all supernova types. Constraints from the distribution of IMEs, e.g. silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the (56)Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of (56)Ni during the deflagration burning phase and little (or no) (56)Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the IMEs is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of (56)Ni production during the early subsonic phase of expansion.
Growing evidence suggests that Type Iax supernovae might be the result of thermonuclear deflagrations of Chandrasekhar-mass white dwarfs in binary systems. We carry out Monte Carlo radiative transfer simulations and predict spectropolarimetric featur es originating from the supernova explosion and subsequent ejecta interaction with the companion star. Specifically, we calculate viewing-angle dependent flux and polarisation spectra for a 3D model simulating the deflagration of a Chandrasekhar-mass white dwarf and, for a second model, simulating the ejecta interaction with a main-sequence star. We find that the intrinsic signal is weakly polarised and only mildly viewing-angle dependent, owing to the overall spherical symmetry of the explosion and the depolarising contribution of iron-group elements dominating the ejecta composition. The interaction with the companion star carves out a cavity in the ejecta and produces a detectable, but modest signal that is significant only at relatively blue wavelengths ($lesssim$ 5000 $unicode{x212B}$). In particular, increasingly fainter and redder spectra are predicted for observer orientations further from the cavity, while a modest polarisation signal $Psim0.2$ per cent is found at blue wavelengths for orientations 30$^circ$ and 45$^circ$ away from the cavity. We find a reasonable agreement between the interaction model viewed from these orientations and spectropolarimetric data of SN 2005hk and interpret the maximum-light polarisation signal seen at blue wavelengths for this event as a possible signature of the ejecta-companion interaction. We encourage further polarimetric observations of SNe Iax to test whether our results can be extended and generalised to the whole SN Iax class.
86 - M. R. Magee 2016
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of M$_r$ = -17.27 $pm$ 0.07, and a ($Delta m_{15})_r$ = 0.69 $pm$ 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ~0.2 M$_{odot}$ of material containing ~0.07 M$_{odot}$ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that $lesssim$0.6 M_sun of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا