ترغب بنشر مسار تعليمي؟ اضغط هنا

Logistic map trajectory distributions: Renormalization-group, entropy and criticality at the transition to chaos

71   0   0.0 ( 0 )
 نشر من قبل Alvaro Diaz-Ruelas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the probability density of ensembles of iterates of the logistic map that advance towards and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade, and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The iteration time progress of the densities of trajectories is determined via the action of the Frobenius-Perron (FP) operator. As a difference with the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this iconic model can be better characterized in statistical-mechanical terms. The scaling of the densities along the considered families of attractors conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows. Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal system undergoing a second-order phase transition. We discuss our results.



قيم البحث

اقرأ أيضاً

We consider nonequilibrium probabilistic dynamics in logistic-like maps $x_{t+1}=1-a|x_t|^z$, $(z>1)$ at their chaos threshold: We first introduce many initial conditions within one among $W>>1$ intervals partitioning the phase space and focus on the unique value $q_{sen}<1$ for which the entropic form $S_q equiv frac{1-sum_{i=1}^{W} p_i^q}{q-1}$ {it linearly} increases with time. We then verify that $S_{q_{sen}}(t) - S_{q_{sen}}(infty)$ vanishes like $t^{-1/[q_{rel}(W)-1]}$ [$q_{rel}(W)>1$]. We finally exhibit a new finite-size scaling, $q_{rel}(infty) - q_{rel}(W) propto W^{-|q_{sen}|}$. This establishes quantitatively, for the first time, a long pursued relation between sensitivity to the initial conditions and relaxation, concepts which play central roles in nonextensive statistical mechanics.
The probability distribution of sums of iterates of the logistic map at the edge of chaos has been recently shown [see U. Tirnakli, C. Beck and C. Tsallis, Phys. Rev. E 75, 040106(R) (2007)] to be numerically consistent with a q-Gaussian, the distrib ution which, under appropriate constraints, maximizes the nonadditive entropy S_q, the basis of nonextensive statistical mechanics. This analysis was based on a study of the tails of the distribution. We now check the entire distribution, in particular its central part. This is important in view of a recent q-generalization of the Central Limit Theorem, which states that for certain classes of strongly correlated random variables the rescaled sum approaches a q-Gaussian limit distribution. We numerically investigate for the logistic map with a parameter in a small vicinity of the critical point under which conditions there is convergence to a q-Gaussian both in the central region and in the tail region, and find a scaling law involving the Feigenbaum constant delta. Our results are consistent with a large number of already available analytical and numerical evidences that the edge of chaos is well described in terms of the entropy S_q and its associated concepts.
We develop a theoretical approach to ``spontaneous stochasticity in classical dynamical systems that are nearly singular and weakly perturbed by noise. This phenomenon is associated to a breakdown in uniqueness of solutions for fixed initial data and underlies many fundamental effects of turbulence (unpredictability, anomalous dissipation, enhanced mixing). Based upon analogy with statistical-mechanical critical points at zero temperature, we elaborate a renormalization group (RG) theory that determines the universal statistics obtained for sufficiently long times after the precise initial data are ``forgotten. We apply our RG method to solve exactly the ``minimal model of spontaneous stochasticity given by a 1D singular ODE. Generalizing prior results for the infinite-Reynolds limit of our model, we obtain the RG fixed points that characterize the spontaneous statistics in the near-singular, weak-noise limit, determine the exact domain of attraction of each fixed point, and derive the universal approach to the fixed points as a singular large-deviations scaling, distinct from that obtained by the standard saddle-point approximation to stochastic path-integrals in the zero-noise limit. We present also numerical simulation results that verify our analytical predictions, propose possible experimental realizations of the ``minimal model, and discuss more generally current empirical evidence for ubiquitous spontaneous stochasticity in Nature. Our RG method can be applied to more complex, realistic systems and some future applications are briefly outlined.
The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven o pen systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex valued Landau-Ginzburg functional, which captures the near critical non-equilibrium dynamics, and generalizes Model A for classical relaxational dynamics with non-conserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest non-trivial order in the dimensional epsilon expansion about the upper critical dimension d_c = 4, and establish the emergence of a novel universal scaling exponent associated with the non-equilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (sub-)diffusive Model B with complex coefficients.
We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced b y Pluchino et al [Phys. Rev. E {bf 87}, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time $tau$, possible connections with $q$-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy $S_q$, basis of nonextensive statistics mechanics. We have here a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple $q$-Gaussians. Nevertheless, along many decades, the fitting with $q$-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index $q$ evolves with $(N, tau, epsilon, sigma_{max})$. It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by the Pluchino et al model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا