ﻻ يوجد ملخص باللغة العربية
The probability distribution of sums of iterates of the logistic map at the edge of chaos has been recently shown [see U. Tirnakli, C. Beck and C. Tsallis, Phys. Rev. E 75, 040106(R) (2007)] to be numerically consistent with a q-Gaussian, the distribution which, under appropriate constraints, maximizes the nonadditive entropy S_q, the basis of nonextensive statistical mechanics. This analysis was based on a study of the tails of the distribution. We now check the entire distribution, in particular its central part. This is important in view of a recent q-generalization of the Central Limit Theorem, which states that for certain classes of strongly correlated random variables the rescaled sum approaches a q-Gaussian limit distribution. We numerically investigate for the logistic map with a parameter in a small vicinity of the critical point under which conditions there is convergence to a q-Gaussian both in the central region and in the tail region, and find a scaling law involving the Feigenbaum constant delta. Our results are consistent with a large number of already available analytical and numerical evidences that the edge of chaos is well described in terms of the entropy S_q and its associated concepts.
We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced b
We consider nonequilibrium probabilistic dynamics in logistic-like maps $x_{t+1}=1-a|x_t|^z$, $(z>1)$ at their chaos threshold: We first introduce many initial conditions within one among $W>>1$ intervals partitioning the phase space and focus on the
We study the evolution of the probability density of ensembles of iterates of the logistic map that advance towards and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along
We numerically investigate the sensitivity to initial conditions of asymmetric unimodal maps $x_{t+1} = 1-a|x_t|^{z_i}$ ($i=1,2$ correspond to $x_t>0$ and $x_t<0$ respectively, $z_i >1$, $0<aleq 2$, $t=0,1,2,...$) at the edge of chaos. We employ thre
Self-adjusting, or adaptive systems have gathered much recent interest. We present a model for self-adjusting systems which treats the control parameters of the system as slowly varying, rather than constant. The dynamics of these parameters is gover