ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparative study on movement feature in different directions for micro-expression recognition

75   0   0.0 ( 0 )
 نشر من قبل Jinsheng Wei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Micro-expression can reflect peoples real emotions. Recognizing micro-expressions is difficult because they are small motions and have a short duration. As the research is deepening into micro-expression recognition, many effective features and methods have been proposed. To determine which direction of movement feature is easier for distinguishing micro-expressions, this paper selects 18 directions (including three types of horizontal, vertical and oblique movements) and proposes a new low-dimensional feature called the Histogram of Single Direction Gradient (HSDG) to study this topic. In this paper, HSDG in every direction is concatenated with LBP-TOP to obtain the LBP with Single Direction Gradient (LBP-SDG) and analyze which direction of movement feature is more discriminative for micro-expression recognition. As with some existing work, Euler Video Magnification (EVM) is employed as a preprocessing step. The experiments on the CASME II and SMIC-HS databases summarize the effective and optimal directions and demonstrate that HSDG in an optimal direction is discriminative, and the corresponding LBP-SDG achieves state-of-the-art performance using EVM.

قيم البحث

اقرأ أيضاً

Micro-Expression Recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features algorithms for micro-expression reco gnition. However, they do not reveal the specific discriminative characteristics, which lead to sub-optimal performance. This paper proposes a novel Feature Refinement ({FR}) with expression-specific feature learning and fusion for micro-expression recognition. It aims to obtain salient and discriminative features for specific expressions and also predict expression by fusing the expression-specific features. FR consists of an expression proposal module with attention mechanism and a classification branch. First, an inception module is designed based on optical flow to obtain expression-shared features. Second, in order to extract salient and discriminative features for specific expression, expression-shared features are fed into an expression proposal module with attention factors and proposal loss. Last, in the classification branch, labels of categories are predicted by a fusion of the expression-specific features. Experiments on three publicly available databases validate the effectiveness of FR under different protocol. Results on public benchmarks demonstrate that our FR provides salient and discriminative information for micro-expression recognition. The results also show our FR achieves better or competitive performance with the existing state-of-the-art methods on micro-expression recognition.
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into the micro-expression recognition area. Whilst the h igher recognition accuracy achieved, substantial challenges in micro-expression recognition remain. The existence of micro expression in small-local areas on face and limited size of available databases still constrain the recognition accuracy on such emotional facial behavior. In this work, to tackle such challenges, we propose a novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial areas of interest covering different action units. Moreover, coping with small datasets, the micro-attention is designed without adding noticeable parameters while a simple yet efficient transfer learning approach is together utilized to alleviate the overfitting risk. With extensive experimental evaluations on three benchmarks (CASMEII, SAMM and SMIC) and post-hoc feature visualizations, we demonstrate the effectiveness of the proposed micro-attention and push the boundary of automatic recognition of micro-expression.
Correctly perceiving micro-expression is difficult since micro-expression is an involuntary, repressed, and subtle facial expression, and efficiently revealing the subtle movement changes and capturing the significant segments in a micro-expression s equence is the key to micro-expression recognition (MER). To handle the crucial issue, in this paper, we firstly propose a dynamic segmented sparse imaging module (DSSI) to compute dynamic images as local-global spatiotemporal descriptors under a unique sampling protocol, which reveals the subtle movement changes visually in an efficient way. Secondly, a segmented movement-attending spatiotemporal network (SMA-STN) is proposed to further unveil imperceptible small movement changes, which utilizes a spatiotemporal movement-attending module (STMA) to capture long-distance spatial relation for facial expression and weigh temporal segments. Besides, a deviation enhancement loss (DE-Loss) is embedded in the SMA-STN to enhance the robustness of SMA-STN to subtle movement changes in feature level. Extensive experiments on three widely used benchmarks, i.e., CASME II, SAMM, and SHIC, show that the proposed SMA-STN achieves better MER performance than other state-of-the-art methods, which proves that the proposed method is effective to handle the challenging MER problem.
Micro-expressions (MEs) are involuntary facial movements revealing peoples hidden feelings in high-stake situations and have practical importance in medical treatment, national security, interrogations and many human-computer interaction systems. Ear ly methods for MER mainly based on traditional appearance and geometry features. Recently, with the success of deep learning (DL) in various fields, neural networks have received increasing interests in MER. Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection, thus have small-scale datasets. DL based MER becomes challenging due to above ME characters. To date, various DL approaches have been proposed to solve the ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep micro-expression recognition (MER), including datasets, deep MER pipeline, and the bench-marking of most influential methods. This survey defines a new taxonomy for the field, encompassing all aspects of MER based on DL. For each aspect, the basic approaches and advanced developments are summarized and discussed. In addition, we conclude the remaining challenges and and potential directions for the design of robust deep MER systems. To the best of our knowledge, this is the first survey of deep MER methods, and this survey can serve as a reference point for future MER research.
Micro-expression recognition (textbf{MER}) has attracted lots of researchers attention in a decade. However, occlusion will occur for MER in real-world scenarios. This paper deeply investigates an interesting but unexplored challenging issue in MER, ie, occlusion MER. First, to research MER under real-world occlusion, synthetic occluded micro-expression databases are created by using various mask for the community. Second, to suppress the influence of occlusion, a underline{R}egion-inspired underline{R}elation underline{R}easoning underline{N}etwork (textbf{RRRN}) is proposed to model relations between various facial regions. RRRN consists of a backbone network, the Region-Inspired (textbf{RI}) module and Relation Reasoning (textbf{RR}) module. More specifically, the backbone network aims at extracting feature representations from different facial regions, RI module computing an adaptive weight from the region itself based on attention mechanism with respect to the unobstructedness and importance for suppressing the influence of occlusion, and RR module exploiting the progressive interactions among these regions by performing graph convolutions. Experiments are conducted on handout-database evaluation and composite database evaluation tasks of MEGC 2018 protocol. Experimental results show that RRRN can significantly explore the importance of facial regions and capture the cooperative complementary relationship of facial regions for MER. The results also demonstrate RRRN outperforms the state-of-the-art approaches, especially on occlusion, and RRRN acts more robust to occlusion.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا