ترغب بنشر مسار تعليمي؟ اضغط هنا

B-BOP, the SPICA Imaging Polarimeter

129   0   0.0 ( 0 )
 نشر من قبل Vincent Rev\\'eret
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the B-BOP instrument, a polarimetric camera on board the future ESA-JAXA SPICA far-infrared space observatory. B-BOP will allow the study of the magnetic field in various astrophysical environments thanks to its unprecedented ability to measure the linear polarization of the submillimeter light. The maps produced by B-BOP will contain not only information on total power, but also on the degree and the angle of polarization, simultaneously in three spectral bands (70, 200 and 350 microns). The B-BOP detectors are ultra-sensitive silicon bolometers that are intrinsically sensitive to polarization. Their NEP is close to 10E-18 W/sqrt(Hz). We will present the optical and thermal architectures of the instrument, we will detail the bolometer design and we will show the expected performances of the instrument based on preliminary lab work.

قيم البحث

اقرأ أيضاً

SPICA, the cryogenic infrared space telescope recently pre-selected for a `Phase A concept study as one of the three remaining candidates for ESAs fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager (SPICA-POL, now called B-BOP), which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetized Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100-350 micron images of linearly polarized dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 micron images will also have a factor ~30 higher resolution than Planck polarization data. This will make B-BOP a unique tool for characterizing the statistical properties of the magnetized interstellar medium and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
We present the design and performance of RoboPol, a four-channel optical polarimeter operating at the Skinakas Observatory in Crete, Greece. RoboPol is capable of measuring both relative linear Stokes parameters $q$ and $u$ (and the total intensity $ I$) in one sky exposure. Though primarily used to measure the polarization of point sources in the R-band, the instrument features additional filters (B, V and I), enabling multi-wavelength imaging polarimetry over a large field of view (13.6 $times$ 13.6). We demonstrate the accuracy and stability of the instrument throughout its five years of operation. Best performance is achieved within the central region of the field of view and in the R band. For such measurements the systematic uncertainty is below 0.1% in fractional linear polarization, $p$ (0.05% maximum likelihood). Throughout all observing seasons the instrumental polarization varies within 0.1% in $p$ and within 1$^circ$ in polarization angle.
An Andor 1K $times$ 1K EMCCD detector has been used to develop an optical imaging polarimeter for use at the Cassegrain focus of 1.2 m telescope of PRL. The optics is derived from an older single-element detector instrument and consists of a rotating half-wave plate as modulator and a Foster prism as an analyser. The field of view of the instrument is 3 $times$ 3 sq arcmin. We describe the instrument and the observational methodology in this document. Extensive observations have been carried out with this instrument covering a large variety of sources e.g. near-Earth asteroids, comets, Lynds dark nebulae, open clusters and AGN such as blazars. In the current communication, we discuss some results from the initial calibration runs while the other results will be presented elsewhere.
POLICAN is a near-infrared imaging linear polarimeter developed for the Cananea Near-infrared Camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, Mexico. POLICAN is mounted ahead of CANICA and consist of a rotating super-achromatic 1-2.7 micron half-wave plate (HWP) as the modulator and a fixed wire-grid polarizer as the analyzer. CANICA has a 1024 x 1024 HgCdTe detector with a plate scale of 0.32 arcsec/pixel and provides a field of view of 5.5 x 5.5 arcmin^2. The polarimetric observations are carried out by modulating the incoming light through different steps of half-wave plate angles 0, 22.5, 45, 67.5 deg, to establish linear Stokes parameters (I, Q, and U). Image reduction consists of dark subtraction, polarimetric flat fielding, and sky subtraction. The astrometry and photometric calibrations are performed using the publicly available data from the Two Micron All Sky Survey. Polarimetric calibration includes observations of globular clusters and polarization standards available in the literature. Analysis of multiple observations of globular clusters yielded an instrumental polarization of 0.51%. Uncertainties in polarization range from 0.1% to 10% from the brightest 7 mag to faintest 16 mag stars. The polarimetric accuracy achieved is better than 0.5% and the position angle errors less than 5 deg for stars brighter than 13 mag in H-band. POLICAN is mainly being used to study the scattered polarization and magnetic fields in and around star-forming regions of the interstellar medium.
X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimete r Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا