ﻻ يوجد ملخص باللغة العربية
The recent development of likelihood-free inference aims training a flexible density estimator for the target posterior with a set of input-output pairs from simulation. Given the diversity of simulation structures, it is difficult to find a single unified inference method for each simulation model. This paper proposes a universally applicable regularization technique, called Posterior-Aided Regularization (PAR), which is applicable to learning the density estimator, regardless of the model structure. Particularly, PAR solves the mode collapse problem that arises as the output dimension of the simulation increases. PAR resolves this posterior mode degeneracy through a mixture of 1) the reverse KL divergence with the mode seeking property; and 2) the mutual information for the high quality representation on likelihood. Because of the estimation intractability of PAR, we provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network. Afterwards, we theoretically prove the asymptotic convergence of the regularized optimal solution to the unregularized optimal solution as the regularization magnitude converges to zero. Additionally, we empirically show that past sequential neural likelihood inferences in conjunction with PAR present the statistically significant gains on diverse simulation tasks.
Generative Adversarial Network (GAN) can be viewed as an implicit estimator of a data distribution, and this perspective motivates using the adversarial concept in the true input parameter estimation of black-box generators. While previous works on l
Bayesian inference without the access of likelihood, or likelihood-free inference, has been a key research topic in simulations, to yield a more realistic generation result. Recent likelihood-free inference updates an approximate posterior sequential
Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo; MCMC) is challenged on two fronts: high computational cost of likelihood evaluations with m
A multi-layer deep Gaussian process (DGP) model is a hierarchical composition of GP models with a greater expressive power. Exact DGP inference is intractable, which has motivated the recent development of deterministic and stochastic approximation m
The variational autoencoder (VAE) is a popular model for density estimation and representation learning. Canonically, the variational principle suggests to prefer an expressive inference model so that the variational approximation is accurate. Howeve