ترغب بنشر مسار تعليمي؟ اضغط هنا

High-performance quantum entanglement generation via cascaded second-order nonlinear processes

95   0   0.0 ( 0 )
 نشر من قبل Qiang Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we demonstrate the generation of high-performance entangled photon-pairs in different degrees of freedom from a single piece of fiber pigtailed periodically poled LiNbO$_3$ (PPLN) waveguide. We utilize cascaded second-order nonlinear optical processes, i.e. second-harmonic generation (SHG) and spontaneous parametric down conversion (SPDC), to generate photon-pairs. Previously, the performance of the photon pairs is contaminated by Raman noise photons from the fiber pigtails. Here by integrating the PPLN waveguide with noise rejecting filters, we obtain a coincidence-to-accidental ratio (CAR) higher than 52,600 with photon-pair generation and detection rate of 52.3 kHz and 3.5 kHz, respectively. Energy-time, frequency-bin and time-bin entanglement is prepared by coherently superposing correlated two-photon states in these degrees of freedom, respectively. The energy-time entangled two-photon states achieve the maximum value of CHSH-Bell inequality of S=2.708$pm$0.024 with a two-photon interference visibility of 95.74$pm$0.86%. The frequency-bin entangled two-photon states achieve fidelity of 97.56$pm$1.79% with a spatial quantum beating visibility of 96.85$pm$2.46%. The time-bin entangled two-photon states achieve the maximum value of CHSH-Bell inequality of S=2.595$pm$0.037 and quantum tomographic fidelity of 89.07$pm$4.35%. Our results provide a potential candidate for quantum light source in quantum photonics.



قيم البحث

اقرأ أيضاً

121 - M.K. Olsen 2017
We compare the bipartite entanglement and EPR-steering properties of the two different schemes which produce third harmonic optical fields from an input field at the fundamental frequency. The first scheme uses second harmonic cascaded with sum-frequ ency generation while the second uses triply degenerate four-wave mixing, also known as direct third harmonic generation. We examine and compare the two schemes in both the travelling wave and intra-cavity configurations. We find that both schemes produce continuous-variable bipartite entanglement and EPR-steering. The direct scheme produces a greater degree of EPR-steering while the cascaded scheme allows for greater flexibility in having three available bipartitions.
188 - L. G. Helt , M. J. Steel 2014
We show that a useful connection exists between spontaneous parametric downconversion (SPDC) and sum frequency generation in nonlinear optical waveguides with arbitrary scattering loss, while the same does not hold true for SPDC and difference freque ncy generation. This result deepens the relationship between quantum and classical second-order nonlinear optical processes in waveguides, and identifies the most accurate characterization of their quantum performance in the presence of loss based solely on classical measurements.
It is shown, theoretically and experimentally, that at any type-II spontaneous parametric down-conversion (SPDC) phase matching, the decoherence-free singlet Bell state is always present within the natural bandwidth and can be filtered out by a prope r spectral selection. Instead of the frequency selection, one can perform time selection of the two-photon time amplitude at the output of a dispersive fibre. Applications to quantum communication are outlined.
Intense efforts have been made in recent years to realize nonlinear optical interactions at the single-photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by using single atoms or other quantum emitters while the possibility of achieving strong second-order nonlinearities remains unexplored. Here, we describe a novel technique to realize such nonlinearities using graphene, exploiting the strong per-photon fields associated with tightly confined graphene plasmons in combination with spatially nonlocal nonlinear optical interactions. We show that in properly designed graphene nanostructures, these conditions enable extremely strong internal down-conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process of second harmonic generation. A separate issue is how such strong internal nonlinearities can be observed, given the nominally weak coupling between these plasmon resonances and free-space radiative fields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we show that the internal nonlinearities can manifest themselves as efficient frequency conversion of radiative fields at extremely low input powers. On the other hand, the development of techniques to efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level of single input photons.
Quantum systems in mixed states can be unentangled and yet still correlated in a way that is not possible for classical systems. These correlations can be quantified by the quantum discord and might provide a resource for certain mixed-state quantum information processing tasks. Here we report on the generation of discordant states of two trapped atomic ions via Markovian decoherence processes. While entanglement is strictly non-increasing under such operations, discord can be generated in various forms. Firstly we show that, starting from two classically correlated qubits, it is possible to generate discord by applying decoherence to just one of them. Secondly, even when starting with completely uncorrelated systems, we show that discord can be generated via classically correlated decoherence processes. Finally, the Werner states are created. The generated states can be used as a resource state for quantum information transmission and could be readily extended to more ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا