ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Intents behind Interactions with Knowledge Graph for Recommendation

350   0   0.0 ( 0 )
 نشر من قبل Xiang Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge graph (KG) plays an increasingly important role in recommender systems. A recent technical trend is to develop end-to-end models founded on graph neural networks (GNNs). However, existing GNN-based models are coarse-grained in relational modeling, failing to (1) identify user-item relation at a fine-grained level of intents, and (2) exploit relation dependencies to preserve the semantics of long-range connectivity. In this study, we explore intents behind a user-item interaction by using auxiliary item knowledge, and propose a new model, Knowledge Graph-based Intent Network (KGIN). Technically, we model each intent as an attentive combination of KG relations, encouraging the independence of different intents for better model capability and interpretability. Furthermore, we devise a new information aggregation scheme for GNN, which recursively integrates the relation sequences of long-range connectivity (i.e., relational paths). This scheme allows us to distill useful information about user intents and encode them into the representations of users and items. Experimental results on three benchmark datasets show that, KGIN achieves significant improvements over the state-of-the-art methods like KGAT, KGNN-LS, and CKAN. Further analyses show that KGIN offers interpretable explanations for predictions by identifying influential intents and relational paths. The implementations are available at https://github.com/huangtinglin/Knowledge_Graph_based_Intent_Network.



قيم البحث

اقرأ أيضاً

171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) predict ion of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in cu rrent KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Session-based recommendation (SBR) learns users preferences by capturing the short-term and sequential patterns from the evolution of user behaviors. Among the studies in the SBR field, graph-based approaches are a relatively powerful kind of way, wh ich generally extract item information by message aggregation under Euclidean space. However, such methods cant effectively extract the hierarchical information contained among consecutive items in a session, which is critical to represent users preferences. In this paper, we present a hyperbolic contrastive graph recommender (HCGR), a principled session-based recommendation framework involving Lorentz hyperbolic space to adequately capture the coherence and hierarchical representations of the items. Within this framework, we design a novel adaptive hyperbolic attention computation to aggregate the graph message of each users preference in a session-based behavior sequence. In addition, contrastive learning is leveraged to optimize the item representation by considering the geodesic distance between positive and negative samples in hyperbolic space. Extensive experiments on four real-world datasets demonstrate that HCGR consistently outperforms state-of-the-art baselines by 0.43$%$-28.84$%$ in terms of $HitRate$, $NDCG$ and $MRR$.
Conversational Recommender Systems (CRSs) in E-commerce platforms aim to recommend items to users via multiple conversational interactions. Click-through rate (CTR) prediction models are commonly used for ranking candidate items. However, most CRSs a re suffer from the problem of data scarcity and sparseness. To address this issue, we propose a novel knowledge-enhanced deep cross network (K-DCN), a two-step (pretrain and fine-tune) CTR prediction model to recommend items. We first construct a billion-scale conversation knowledge graph (CKG) from information about users, items and conversations, and then pretrain CKG by introducing knowledge graph embedding method and graph convolution network to encode semantic and structural information respectively.To make the CTR prediction model sensible of current state of users and the relationship between dialogues and items, we introduce user-state and dialogue-interaction representations based on pre-trained CKG and propose K-DCN.In K-DCN, we fuse the user-state representation, dialogue-interaction representation and other normal feature representations via deep cross network, which will give the rank of candidate items to be recommended.We experimentally prove that our proposal significantly outperforms baselines and show its real application in Alime.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا