ﻻ يوجد ملخص باللغة العربية
We construct a broad class of solutions of the KP-I equation by using a reduced version of the Grammian form of the $tau$-function. The basic solution is a linear periodic chain of lumps propagating with distinct group and wave velocities. More generally, our solutions are evolving linear arrangements of lump chains, and can be viewed as the KP-I analogues of the family of line-soliton solutions of KP-II. However, the linear arrangements that we construct for KP-I are more general, and allow degenerate configurations such as parallel or superimposed lump chains. We also construct solutions describing interactions between lump chains and individual lumps, and discuss the relationship between the solutions obtained using the reduced and regular Grammian forms.
The paper presents an approach to derive finite genus solutions to the lattice potential Kadomtsev-Petviashvili (lpKP) equation introduced by F.W. Nijhoff, et al. This equation is rederived from compatible conditions of three replicas of the discrete
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On
A method is proposed to construct a new extended KP hierarchy, which includes two types of KP equation with self-consistent sources and admits reductions to k-constrained KP hierarchy and to Gelfand-Dickey hierarchy with sources. It provides a genera
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation [partial_t u - partial_x^5 u -partial_x^{-1}partial_y^2u + upartial_x u = 0,~(t,x,y)inmathbb{R}timesmathbb{T}^2] We prove global well-posedness for
In the recent paper (R. Willox and M. Hattori, arXiv:1406.5828), an integrable discretization of the nonlinear Schrodinger (NLS) equation is studied, which, they think, was discovered by Date, Jimbo and Miwa in 1983 and has been completely forgotten