ترغب بنشر مسار تعليمي؟ اضغط هنا

Lump chains in the KP-I equation

299   0   0.0 ( 0 )
 نشر من قبل Dmitry Zakharov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a broad class of solutions of the KP-I equation by using a reduced version of the Grammian form of the $tau$-function. The basic solution is a linear periodic chain of lumps propagating with distinct group and wave velocities. More generally, our solutions are evolving linear arrangements of lump chains, and can be viewed as the KP-I analogues of the family of line-soliton solutions of KP-II. However, the linear arrangements that we construct for KP-I are more general, and allow degenerate configurations such as parallel or superimposed lump chains. We also construct solutions describing interactions between lump chains and individual lumps, and discuss the relationship between the solutions obtained using the reduced and regular Grammian forms.



قيم البحث

اقرأ أيضاً

The paper presents an approach to derive finite genus solutions to the lattice potential Kadomtsev-Petviashvili (lpKP) equation introduced by F.W. Nijhoff, et al. This equation is rederived from compatible conditions of three replicas of the discrete ZS-AKNS spectral problem, which is a Darboux transformation of the continuous ZS-AKNS spectral problem. With the help of these links and by means of the so called nonlinearization technique and Liouville platform, finite genus solutions of the lpKP equation are derived. Semi-discrete potential KP equations with one and two discrete arguments, respectively, are also discussed.
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $xto 0$ and $qto 1$, simultaneously.
A method is proposed to construct a new extended KP hierarchy, which includes two types of KP equation with self-consistent sources and admits reductions to k-constrained KP hierarchy and to Gelfand-Dickey hierarchy with sources. It provides a genera l way to construct soliton equations with sources and their Lax representations.
67 - Tristan Robert 2017
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation [partial_t u - partial_x^5 u -partial_x^{-1}partial_y^2u + upartial_x u = 0,~(t,x,y)inmathbb{R}timesmathbb{T}^2] We prove global well-posedness for constant $x$ mean value initial data in the space $mathbb{E} = {uin L^2,~partial_x^2 u in L^2,~partial_x^{-1}partial_y u in L^2}$ which is the natural energy space associated with this equation.
340 - Takayuki Tsuchida 2014
In the recent paper (R. Willox and M. Hattori, arXiv:1406.5828), an integrable discretization of the nonlinear Schrodinger (NLS) equation is studied, which, they think, was discovered by Date, Jimbo and Miwa in 1983 and has been completely forgotten over the years. In fact, this discrete NLS hierarchy can be directly obtained from an elementary auto-Backlund transformation for the continuous NLS hierarchy and has been known since 1982. Nevertheless, it has been rediscovered again and again in the literature without attribution, so we consider it meaningful to mention overlooked original references on this discrete NLS hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا