ﻻ يوجد ملخص باللغة العربية
Inspired by a width invariant defined on permutations by Guillemot and Marx, the twin-width invariant has been recently introduced by Bonnet, Kim, Thomasse, and Watrigant. We prove that a class of binary relational structures (that is: edge-colored partially directed graphs) has bounded twin-width if and only if it is a first-order transduction of a~proper permutation class. As a by-product, it shows that every class with bounded twin-width contains at most $2^{O(n)}$ pairwise non-isomorphic $n$-vertex graphs.
Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA 14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, $K_t$-free unit $d$-dimensiona
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for $k$-Dominating Set on graphs of t
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths -- a result that shows a strong link between the properties of these graph classes considered from the point of vie
Classes with bounded rankwidth are MSO-transductions of trees and classes with bounded linear rankwidth are MSO-transductions of paths. These results show a strong link between the properties of these graph classes considered from the point of view o
In this paper, we prove that a graph $G$ with no $K_{s,s}$-subgraph and twin-width $d$ has $r$-admissibility and $r$-coloring numbers bounded from above by an exponential function of $r$ and that we can construct graphs achieving such a dependency in $r$.