ترغب بنشر مسار تعليمي؟ اضغط هنا

The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption

192   0   0.0 ( 0 )
 نشر من قبل Chaowei Jiang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phenomenon of peripheral coronal loop contraction during solar flares and eruptions, recently discovered in observations, gradually intrigues solar physicists. However, its underlying physical mechanism is still uncertain. One is Hudson (2000)s implosion conjecture which attributes it to magnetic pressure reduction in the magnetic energy liberation core, while other researchers proposed alternative explanations. In previous observational studies we also note the disappearance of peripheral shrinking loops in the late phase, of which there is a lack of investigation and interpretation. In this paper, we exploit a full MHD simulation of solar eruption to study the causes of the two phenomena. It is found that the loop motion in the periphery is well correlated with magnetic energy accumulation and dissipation in the core, and the loop shrinkage is caused by a more significant reduction in magnetic pressure gradient force than in magnetic tension force, consistent with the implosion conjecture. The peripheral contracting loops in the late phase act as inflow to reconnect with central erupting structures, which destroys their identities and naturally explains their disappearance. We also propose a positive feedback between the peripheral magnetic reconnection and the central eruption.



قيم البحث

اقرأ أيضاً

Context. Prominence eruptions provide key observations to understand the launch of coronal mass ejections as their cold plasma traces a part of the unstable magnetic configuration. Aims. We select a well observed case to derive observational constr aints for eruption models. Methods. We analyze the prominence eruption and loop expansion and contraction observed on 02 March 2015 associated with a GOES M3.7 class flare (SOL2015-03-02T15:27) using the data from Atmospheric Imaging Assembly (AIA) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We study the prominence eruption and the evolution of loops using the time-distance techniques. Results. The source region is a decaying bipolar active region where magnetic flux cancellation is present for several days before the eruption. AIA observations locate the erupting prominence within a flux rope viewed along its local axis direction. We identify and quantify the motion of loops in contraction and expansion located on the side of the erupting flux rope. Finally, RHESSI hard X-ray observations identify the loop top and two foot-point sources. Conclusions. Both AIA and RHESSI observations support the standard model of eruptive flares. The contraction occurs 19 minutes after the start of the prominence eruption indicating that this contraction is not associated with the eruption driver. Rather, this prominence eruption is compatible with an unstable flux rope where the contraction and expansion of the lateral loop is the consequence of a side vortex developing after the flux rope is launched.
The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic stability and evolution of nonlinear force-free f ield (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region that erupted on 2010 April 8 as initial condition in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation, include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of magnetofrictional relaxation runs, in particular that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields very good agreement with a number of observed features like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion formulated in terms of a threshold value for the axial flux in the rope corresponds very well to the threshold of the torus instability in the considered active region.
We analyze the observations of EUV loop evolution associated with the filament eruption located at the border of an active region. The event SOL2013-03-16T14:00 was observed with a large difference of view point by the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory --A spacecraft. The filament height is fitted with the sum of a linear and exponential function. These two phases point to different physical mechanisms such as: tether-cutting reconnection and a magnetic instability. While no X-ray emission is reported, this event presents the classical eruption features like: separation of double ribbons and the growth of flare loops. We report the migration of the southern foot of the erupting filament flux rope due to the interchange reconnection with encountered magnetic loops of a neighbouring AR. Parallel to the erupting filament, a stable filament remains in the core of active region. The specificity of this eruption is that coronal loops, located above the nearly joining ends of the two filaments, first contract in phase, then expand and reach a new stable configuration close to the one present at the eruption onset. Both contraction and expansion phases last around 20 min. The main difference with previous cases is that the PIL bent about 180 deg around the end of the erupting filament because the magnetic configuration is at least tri-polar. These observations are challenging for models which interpreted previous cases of loop contraction within a bipolar configuration. New simulations are required to broaden the complexity of the configurations studied.
131 - S. Rial , I. Arregui , J. Terradas 2010
We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively generated perturbations is studied by solving the linear, ideal magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we neglect gas pressure the slow mode is absent and therefore only coupled MHD fast and Alfven modes remain. Two types of numerical experiments are performed. First, the resonant wave energy transfer between a fast normal mode of the system and local Alfven waves is analyzed. It is seen how, because of resonant coupling, the fast wave with global character transfers its energy to Alfvenic oscillations localized around a particular magnetic surface within the arcade, thus producing the damping of the initial fast MHD mode. Second, the time evolution of a localized impulsive excitation, trying to mimic a nearby coronal disturbance, is considered. In this case, the generated fast wavefront leaves its energy on several magnetic surfaces within the arcade. The system is therefore able to trap energy in the form of Alfvenic oscillations, even in the absence of a density enhancement such as that of a coronal loop. These local oscillations are subsequently phase-mixed to smaller spatial scales. The amount of wave energy trapped by the system via wave energy conversion strongly depends on the wavelength of perturbations in the perpendicular direction, but is almost independent from the ratio of the magnetic to density scale heights.
On SOL2017-09-06 solar active region 12673 produced an X9.3 flare which is regarded as largest to occur in solar cycle 24. In this work we have preformed a magnetohydrodynamic (MHD) simulation in order to reveal the three-dimensional (3D) dynamics of the magnetic fields associated with the X9.3 solar flare. We first performed an extrapolation of the 3D magnetic field based on the observed photospheric magnetic field prior to the flare and then used it as the initial condition for an MHD simulation. Consequently, the simulation showed a dramatic eruption. In particular, we found that a large coherent flux rope composed of highly twisted magnetic field lines is formed during the eruption. A series of small flux ropes are found to lie along a magnetic polarity inversion line prior to the flare. Reconnection occurring between each small flux rope during the early stages of the eruption forms the large and highly twisted flux rope.Furthermore, we found a writhing motion of the erupting flux rope. The understanding of these dynamics is important in increasing the accuracy of space weather forecasting. We report on the detailed dynamics of the 3D eruptive flux rope and discuss the possible mechanisms of the writhing motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا