ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of a prominence eruption and loop contraction

108   0   0.0 ( 0 )
 نشر من قبل Pooja Devi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Prominence eruptions provide key observations to understand the launch of coronal mass ejections as their cold plasma traces a part of the unstable magnetic configuration. Aims. We select a well observed case to derive observational constraints for eruption models. Methods. We analyze the prominence eruption and loop expansion and contraction observed on 02 March 2015 associated with a GOES M3.7 class flare (SOL2015-03-02T15:27) using the data from Atmospheric Imaging Assembly (AIA) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We study the prominence eruption and the evolution of loops using the time-distance techniques. Results. The source region is a decaying bipolar active region where magnetic flux cancellation is present for several days before the eruption. AIA observations locate the erupting prominence within a flux rope viewed along its local axis direction. We identify and quantify the motion of loops in contraction and expansion located on the side of the erupting flux rope. Finally, RHESSI hard X-ray observations identify the loop top and two foot-point sources. Conclusions. Both AIA and RHESSI observations support the standard model of eruptive flares. The contraction occurs 19 minutes after the start of the prominence eruption indicating that this contraction is not associated with the eruption driver. Rather, this prominence eruption is compatible with an unstable flux rope where the contraction and expansion of the lateral loop is the consequence of a side vortex developing after the flux rope is launched.

قيم البحث

اقرأ أيضاً

We analyze the observations of EUV loop evolution associated with the filament eruption located at the border of an active region. The event SOL2013-03-16T14:00 was observed with a large difference of view point by the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory --A spacecraft. The filament height is fitted with the sum of a linear and exponential function. These two phases point to different physical mechanisms such as: tether-cutting reconnection and a magnetic instability. While no X-ray emission is reported, this event presents the classical eruption features like: separation of double ribbons and the growth of flare loops. We report the migration of the southern foot of the erupting filament flux rope due to the interchange reconnection with encountered magnetic loops of a neighbouring AR. Parallel to the erupting filament, a stable filament remains in the core of active region. The specificity of this eruption is that coronal loops, located above the nearly joining ends of the two filaments, first contract in phase, then expand and reach a new stable configuration close to the one present at the eruption onset. Both contraction and expansion phases last around 20 min. The main difference with previous cases is that the PIL bent about 180 deg around the end of the erupting filament because the magnetic configuration is at least tri-polar. These observations are challenging for models which interpreted previous cases of loop contraction within a bipolar configuration. New simulations are required to broaden the complexity of the configurations studied.
The phenomenon of peripheral coronal loop contraction during solar flares and eruptions, recently discovered in observations, gradually intrigues solar physicists. However, its underlying physical mechanism is still uncertain. One is Hudson (2000)s i mplosion conjecture which attributes it to magnetic pressure reduction in the magnetic energy liberation core, while other researchers proposed alternative explanations. In previous observational studies we also note the disappearance of peripheral shrinking loops in the late phase, of which there is a lack of investigation and interpretation. In this paper, we exploit a full MHD simulation of solar eruption to study the causes of the two phenomena. It is found that the loop motion in the periphery is well correlated with magnetic energy accumulation and dissipation in the core, and the loop shrinkage is caused by a more significant reduction in magnetic pressure gradient force than in magnetic tension force, consistent with the implosion conjecture. The peripheral contracting loops in the late phase act as inflow to reconnect with central erupting structures, which destroys their identities and naturally explains their disappearance. We also propose a positive feedback between the peripheral magnetic reconnection and the central eruption.
Observations of the early rise and propagation phases of solar eruptive prominences can provide clues about the forces acting on them through the behavior of their acceleration with height. We have analyzed such an event, observed on 13 April 2010 by SWAP on PROBA2 and EUVI on STEREO. A feature at the top of the erupting prominence was identified and tracked in images from the three spacecraft. The triangulation technique was used to derive the true direction of propagation of this feature. The reconstructed points were fitted with two mathematical models: i) a power-law polynomial function and ii) a cubic smoothing spline, in order to derive the accelerations. The first model is characterized by five degrees of freedom while the second one is characterized by ten degrees of freedom. The results show that the acceleration increases smoothly and it is continuously increasing with height. We conclude that the prominence is not accelerated immediately by local reconnection but rather is swept away as part of a large-scale relaxation of the coronal magnetic field.
Multi-wavelength observations of prominence eruptions provide an opportunity to uncover the physical mechanism of the triggering and the evolution process of the eruption. In this paper, we investigated an erupting prominence on October 14, 2012, rec orded in H{alpha}, EUV, and X-ray wavelengths. The process of the eruption gives evidences on the existence of a helical magnetic structure and showing the twist being converting to writhe. The estimated twist is ~6{pi} (3 turns), exceeding the threshold of the kink instability. The rising plasma then reached a high speed, estimated at 228 km s-1, followed by a sudden rapid acceleration at 2715 m s-2, and synchronous with a solar are. Co-spatial cusp shaped structures were observed in both AIA 131{AA} and 94{AA} images, signifying the location of the magnetic reconnection. The erupted flux rope finally undergone a deceleration with a maximum value of 391 m s-2, which is even larger than the free-fall acceleration on the Sun (273 m s-2) , suggesting that the eruption finally failed, possibly due to an inward magnetic tension force.
The eruption of a large quiescent prominence on 17 August 2013 and associated coronal mass ejection (CME) were observed from different vantage points by Solar Dynamics Observatory (SDO), Solar-Terrestrial Relations Observatory (STEREO), and Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated parameters of the erupting prominence from a model of radio absorption and measured from 304 AA images. Their variations obtained by both methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results are verified using movies in which the CME expansion was compensated according to the measured kinematics. We found that the CME mass ($3.6 times 10^{15}$ g) was mainly supplied by the prominence ($approx 6 times 10^{15}$ g), while a considerable part drained back. The mass of the coronal-temperature component did not exceed $10^{15}$ g. The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to $25 R_odot$. The aerodynamic drag was insignificant. The core formed until $4 R_odot$. Some of its components were observed to straighten and stretch forward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا