ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalizing Decision Making for Automated Driving with an Invariant Environment Representation using Deep Reinforcement Learning

172   0   0.0 ( 0 )
 نشر من قبل Karl Kurzer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data driven approaches for decision making applied to automated driving require appropriate generalization strategies, to ensure applicability to the worlds variability. Current approaches either do not generalize well beyond the training data or are not capable to consider a variable number of traffic participants. Therefore we propose an invariant environment representation from the perspective of the ego vehicle. The representation encodes all necessary information for safe decision making. To assess the generalization capabilities of the novel environment representation, we train our agents on a small subset of scenarios and evaluate on the entire diverse set of scenarios. Here we show that the agents are capable to generalize successfully to unseen scenarios, due to the abstraction. In addition we present a simple occlusion model that enables our agents to navigate intersections with occlusions without a significant change in performance.



قيم البحث

اقرأ أيضاً

Deep Reinforcement learning is a branch of unsupervised learning in which an agent learns to act based on environment state in order to maximize its total reward. Deep reinforcement learning provides good opportunity to model the complexity of portfo lio choice in high-dimensional and data-driven environment by leveraging the powerful representation of deep neural networks. In this paper, we build a portfolio management system using direct deep reinforcement learning to make optimal portfolio choice periodically among S&P500 underlying stocks by learning a good factor representation (as input). The result shows that an effective learning of market conditions and optimal portfolio allocations can significantly outperform the average market.
190 - Hong Shu , Teng Liu , Xingyu Mu 2020
Knowledge transfer is a promising concept to achieve real-time decision-making for autonomous vehicles. This paper constructs a transfer deep reinforcement learning framework to transform the driving tasks in inter-section environments. The driving m issions at the un-signalized intersection are cast into a left turn, right turn, and running straight for automated vehicles. The goal of the autonomous ego vehicle (AEV) is to drive through the intersection situation efficiently and safely. This objective promotes the studied vehicle to increase its speed and avoid crashing other vehicles. The decision-making pol-icy learned from one driving task is transferred and evaluated in another driving mission. Simulation results reveal that the decision-making strategies related to similar tasks are transferable. It indicates that the presented control framework could reduce the time consumption and realize online implementation.
Reinforcement learning typically assumes that the state update from the previous actions happens instantaneously, and thus can be used for making future decisions. However, this may not always be true. When the state update is not available, the deci sion taken is partly in the blind since it cannot rely on the current state information. This paper proposes an approach, where the delay in the knowledge of the state can be used, and the decisions are made based on the available information which may not include the current state information. One approach could be to include the actions after the last-known state as a part of the state information, however, that leads to an increased state-space making the problem complex and slower in convergence. The proposed algorithm gives an alternate approach where the state space is not enlarged, as compared to the case when there is no delay in the state update. Evaluations on the basic RL environments further illustrate the improved performance of the proposed algorithm.
192 - Teng Liu , Bing Huang , Xingyu Mu 2020
Deep reinforcement learning (DRL) is becoming a prevalent and powerful methodology to address the artificial intelligent problems. Owing to its tremendous potentials in self-learning and self-improvement, DRL is broadly serviced in many research fiel ds. This article conducted a comprehensive comparison of multiple DRL approaches on the freeway decision-making problem for autonomous vehicles. These techniques include the common deep Q learning (DQL), double DQL (DDQL), dueling DQL, and prioritized replay DQL. First, the reinforcement learning (RL) framework is introduced. As an extension, the implementations of the above mentioned DRL methods are established mathematically. Then, the freeway driving scenario for the automated vehicles is constructed, wherein the decision-making problem is transferred as a control optimization problem. Finally, a series of simulation experiments are achieved to evaluate the control performance of these DRL-enabled decision-making strategies. A comparative analysis is realized to connect the autonomous driving results with the learning characteristics of these DRL techniques.
Learning from demonstrations has made great progress over the past few years. However, it is generally data hungry and task specific. In other words, it requires a large amount of data to train a decent model on a particular task, and the model often fails to generalize to new tasks that have a different distribution. In practice, demonstrations from new tasks will be continuously observed and the data might be unlabeled or only partially labeled. Therefore, it is desirable for the trained model to adapt to new tasks that have limited data samples available. In this work, we build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning (Meta-AIRL). We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks and then adapt them to new tasks with the meta-learning framework. Simulation results show that the adapted policy trained with Meta-AIRL can effectively learn from limited number of demonstrations, and quickly reach the performance comparable to that of the experts on unseen tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا