ﻻ يوجد ملخص باللغة العربية
The formation of vortex structures at reflection of electron beam from the double layer of the Jupiter ionosphere is investigated in this paper. And also the influence of these vortex structures on the formation of dense upward electron fluxes, accelerated by the double layer potential along the Io flux tube is studied. Then a phase transition to the cyclotron superradiance mode becomes possible for these electrons. The conditions of the vortex perturbations formation are considered. The nonlinear equation is found that describes the vortex dynamics of electrons and its consequences are studied.
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the
Electron beams in two-dimensional systems can provide a useful tool to study energy-momentum relaxation of electrons and to generate microwave radiation stemming from plasma-beam instabilities. Naturally, these two applications cannot coexist: if bea
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an
We use 3D radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with initially weak mean magnetic fields. Th
We investigate beam loading and emittance preservation for a high-charge electron beam being accelerated in quasi-linear plasma wakefields driven by a short proton beam. The structure of the studied wakefields are similar to those of a long, modulate