ﻻ يوجد ملخص باللغة العربية
Electron beams in two-dimensional systems can provide a useful tool to study energy-momentum relaxation of electrons and to generate microwave radiation stemming from plasma-beam instabilities. Naturally, these two applications cannot coexist: if beam electrons do relax, the beam is stabilized; if instability exists, it strongly distorts the distribution function of beam electrons. In this paper, we study the competition of beam relaxation due to electron-electron (e-e) collisions and development of plasma beam instability in graphene. We find that unstable plasma mode associated with a beam is stabilized already by weak e-e collisions. At intermediate e-e collision frequency, the instability re-appears at the ordinary graphene plasmon mode. Such instability is interpreted as viscous transfer of momentum from beam to 2d plasmons. Its growth rate reaches its maximum at hydrodynamic-to-ballistic crossover, when plasmon wavelength and electron mean free path are of the same order of magnitude.
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene ch
We evaluate the influence of the Coulomb drag of the electrons and holes in the gated n- and p-regions by the ballistic electrons and holes generated in the depleted i-region due to the interband tunneling on the current-voltage characteristics and i
The formation of vortex structures at reflection of electron beam from the double layer of the Jupiter ionosphere is investigated in this paper. And also the influence of these vortex structures on the formation of dense upward electron fluxes, accel
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an