ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Neural Posterior and Likelihood Approximation

170   0   0.0 ( 0 )
 نشر من قبل Samuel Wiqvist
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the sequential neural posterior and likelihood approximation (SNPLA) algorithm. SNPLA is a normalizing flows-based algorithm for inference in implicit models, and therefore is a simulation-based inference method that only requires simulations from a generative model. SNPLA avoids Markov chain Monte Carlo sampling and correction-steps of the parameter proposal function that are introduced in similar methods, but that can be numerically unstable or restrictive. By utilizing the reverse KL divergence, SNPLA manages to learn both the likelihood and the posterior in a sequential manner. Over four experiments, we show that SNPLA performs competitively when utilizing the same number of model simulations as used in other methods, even though the inference problem for SNPLA is more complex due to the joint learning of posterior and likelihood function. Due to utilizing normalizing flows SNPLA generates posterior draws much faster (4 orders of magnitude) than MCMC-based methods.



قيم البحث

اقرأ أيضاً

Recent work has shown that the prior over functions induced by a deep Bayesian neural network (BNN) behaves as a Gaussian process (GP) as the width of all layers becomes large. However, many BNN applications are concerned with the BNN function space posterior. While some empirical evidence of the posterior convergence was provided in the original works of Neal (1996) and Matthews et al. (2018), it is limited to small datasets or architectures due to the notorious difficulty of obtaining and verifying exactness of BNN posterior approximations. We provide the missing theoretical proof that the exact BNN posterior converges (weakly) to the one induced by the GP limit of the prior. For empirical validation, we show how to generate exact samples from a finite BNN on a small dataset via rejection sampling.
Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models h as been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a deep latent variable model. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.
Data augmentation is a highly effective approach for improving performance in deep neural networks. The standard view is that it creates an enlarged dataset by adding synthetic data, which raises a problem when combining it with Bayesian inference: h ow much data are we really conditioning on? This question is particularly relevant to recent observations linking data augmentation to the cold posterior effect. We investigate various principled ways of finding a log-likelihood for augmented datasets. Our approach prescribes augmenting the same underlying image multiple times, both at test and train-time, and averaging either the logits or the predictive probabilities. Empirically, we observe the best performance with averaging probabilities. While there are interactions with the cold posterior effect, neither averaging logits or averaging probabilities eliminates it.
We develop a sequential low-complexity inference procedure for Dirichlet process mixtures of Gaussians for online clustering and parameter estimation when the number of clusters are unknown a-priori. We present an easily computable, closed form param etric expression for the conditional likelihood, in which hyperparameters are recursively updated as a function of the streaming data assuming conjugate priors. Motivated by large-sample asymptotics, we propose a novel adaptive low-complexity design for the Dirichlet process concentration parameter and show that the number of classes grow at most at a logarithmic rate. We further prove that in the large-sample limit, the conditional likelihood and data predictive distribution become asymptotically Gaussian. We demonstrate through experiments on synthetic and real data sets that our approach is superior to other online state-of-the-art methods.
During the past five years the Bayesian deep learning community has developed increasingly accurate and efficient approximate inference procedures that allow for Bayesian inference in deep neural networks. However, despite this algorithmic progress a nd the promise of improved uncertainty quantification and sample efficiency there are---as of early 2020---no publicized deployments of Bayesian neural networks in industrial practice. In this work we cast doubt on the current understanding of Bayes posteriors in popular deep neural networks: we demonstrate through careful MCMC sampling that the posterior predictive induced by the Bayes posterior yields systematically worse predictions compared to simpler methods including point estimates obtained from SGD. Furthermore, we demonstrate that predictive performance is improved significantly through the use of a cold posterior that overcounts evidence. Such cold posteriors sharply deviate from the Bayesian paradigm but are commonly used as heuristic in Bayesian deep learning papers. We put forward several hypotheses that could explain cold posteriors and evaluate the hypotheses through experiments. Our work questions the goal of accurate posterior approximations in Bayesian deep learning: If the true Bayes posterior is poor, what is the use of more accurate approximations? Instead, we argue that it is timely to focus on understanding the origin of the improved performance of cold posteriors.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا