ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Bayesian Inverse Reinforcement Learning

364   0   0.0 ( 0 )
 نشر من قبل Alex Chan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian inference over the reward presents an ideal solution to the ill-posed nature of the inverse reinforcement learning problem. Unfortunately current methods generally do not scale well beyond the small tabular setting due to the need for an inner-loop MDP solver, and even non-Bayesian methods that do themselves scale often require extensive interaction with the environment to perform well, being inappropriate for high stakes or costly applications such as healthcare. In this paper we introduce our method, Approximate Variational Reward Imitation Learning (AVRIL), that addresses both of these issues by jointly learning an approximate posterior distribution over the reward that scales to arbitrarily complicated state spaces alongside an appropriate policy in a completely offline manner through a variational approach to said latent reward. Applying our method to real medical data alongside classic control simulations, we demonstrate Bayesian reward inference in environments beyond the scope of current methods, as well as task performance competitive with focused offline imitation learning algorithms.



قيم البحث

اقرأ أيضاً

Agent-based methods allow for defining simple rules that generate complex group behaviors. The governing rules of such models are typically set a priori and parameters are tuned from observed behavior trajectories. Instead of making simplifying assum ptions across all anticipated scenarios, inverse reinforcement learning provides inference on the short-term (local) rules governing long term behavior policies by using properties of a Markov decision process. We use the computationally efficient linearly-solvable Markov decision process to learn the local rules governing collective movement for a simulation of the self propelled-particle (SPP) model and a data application for a captive guppy population. The estimation of the behavioral decision costs is done in a Bayesian framework with basis function smoothing. We recover the true costs in the SPP simulation and find the guppies value collective movement more than targeted movement toward shelter.
91 - Ce Ju 2019
The goal of the inverse reinforcement learning (IRL) problem is to recover the reward functions from expert demonstrations. However, the IRL problem like any ill-posed inverse problem suffers the congenital defect that the policy may be optimal for m any reward functions, and expert demonstrations may be optimal for many policies. In this work, we generalize the IRL problem to a well-posed expectation optimization problem stochastic inverse reinforcement learning (SIRL) to recover the probability distribution over reward functions. We adopt the Monte Carlo expectation-maximization (MCEM) method to estimate the parameter of the probability distribution as the first solution to the SIRL problem. The solution is succinct, robust, and transferable for a learning task and can generate alternative solutions to the IRL problem. Through our formulation, it is possible to observe the intrinsic property for the IRL problem from a global viewpoint, and our approach achieves a considerable performance on the objectworld.
Inverse reinforcement learning attempts to reconstruct the reward function in a Markov decision problem, using observations of agent actions. As already observed by Russell the problem is ill-posed, and the reward function is not identifiable, even u nder the presence of perfect information about optimal behavior. We provide a resolution to this non-identifiability for problems with entropy regularization. For a given environment, we fully characterize the reward functions leading to a given policy and demonstrate that, given demonstrations of actions for the same reward under two distinct discount factors, or under sufficiently different environments, the unobserved reward can be recovered up to a constant. Through a simple numerical experiment, we demonstrate the accurate reconstruction of the reward function through our proposed resolution.
Supporting state-of-the-art AI research requires balancing rapid prototyping, ease of use, and quick iteration, with the ability to deploy experiments at a scale traditionally associated with production systems.Deep learning frameworks such as Tensor Flow, PyTorch and JAX allow users to transparently make use of accelerators, such as TPUs and GPUs, to offload the more computationally intensive parts of training and inference in modern deep learning systems. Popular training pipelines that use these frameworks for deep learning typically focus on (un-)supervised learning. How to best train reinforcement learning (RL) agents at scale is still an active research area. In this report we argue that TPUs are particularly well suited for training RL agents in a scalable, efficient and reproducible way. Specifically we describe two architectures designed to make the best use of the resources available on a TPU Pod (a special configuration in a Google data center that features multiple TPU devices connected to each other by extremely low latency communication channels).
We consider the problem of learning to behave optimally in a Markov Decision Process when a reward function is not specified, but instead we have access to a set of demonstrators of varying performance. We assume the demonstrators are classified into one of k ranks, and use ideas from ordinal regression to find a reward function that maximizes the margin between the different ranks. This approach is based on the idea that agents should not only learn how to behave from experts, but also how not to behave from non-experts. We show there are MDPs where important differences in the reward function would be hidden from existing algorithms by the behaviour of the expert. Our method is particularly useful for problems where we have access to a large set of agent behaviours with varying degrees of expertise (such as through GPS or cellphones). We highlight the differences between our approach and existing methods using a simple grid domain and demonstrate its efficacy on determining passenger-finding strategies for taxi drivers, using a large dataset of GPS trajectories.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا