ﻻ يوجد ملخص باللغة العربية
Amenability is a notion of facial exposedness for convex cones that is stronger than being facially dual complete (or nice) which is, in turn, stronger than merely being facially exposed. Hyperbolicity cones are a family of algebraically structured closed convex cones that contain all spectrahedra (linear sections of positive semidefinite cones) as special cases. It is known that all spectrahedra are amenable. We establish that all hyperbolicity cones are amenable. As part of the argument, we show that any face of a hyperbolicity cone is a hyperbolicity cone. As a corollary, we show that the intersection of two hyperbolicity cones, not necessarily sharing a common relative interior point, is a hyperbolicity cone.
The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree $d$ in $n$ variables contains
We present a generalization of the notion of neighborliness to non-polyhedral convex cones. Although a definition of neighborliness is available in the non-polyhedral case in the literature, it is fairly restrictive as it requires all the low-dimensi
The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $RR^n$. The analysis interestingly combines use of Poincar
We study the closed convex hull of various collections of Hilbert functions. Working over a standard graded polynomial ring with modules that are generated in degree zero, we describe the supporting hyperplanes and extreme rays for the cones generate
Let $R$ be the homogeneous coordinate ring of a smooth projective variety $X$ over a field $k$ of characteristic~0. We calculate the $K$-theory of $R$ in terms of the geometry of the projective embedding of $X$. In particular, if $X$ is a curve then