ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the time-varying Bayesian optimization problem. The unknown function at each time is assumed to lie in an RKHS (reproducing kernel Hilbert space) with a bounded norm. We adopt the general variation budget model to capture the time-varying environment, and the variation is characterized by the change of the RKHS norm. We adapt the restart and sliding window mechanism to introduce two GP-UCB type algorithms: R-GP-UCB and SW-GP-UCB, respectively. We derive the first (frequentist) regret guarantee on the dynamic regret for both algorithms. Our results not only recover previous linear bandit results when a linear kernel is used, but complement the previous regret analysis of time-varying Gaussian process bandit under a Bayesian-type regularity assumption, i.e., each function is a sample from a Gaussian process.
We consider multi-objective optimization (MOO) of an unknown vector-valued function in the non-parametric Bayesian optimization (BO) setting, with the aim being to learn points on the Pareto front of the objectives. Most existing BO algorithms do not
Some of the most compelling applications of online convex optimization, including online prediction and classification, are unconstrained: the natural feasible set is R^n. Existing algorithms fail to achieve sub-linear regret in this setting unless c
This paper presents a recursive reasoning formalism of Bayesian optimization (BO) to model the reasoning process in the interactions between boundedly rational, self-interested agents with unknown, complex, and costly-to-evaluate payoff functions in
We investigate a repeated two-player zero-sum game setting where the column player is also a designer of the system, and has full control on the design of the payoff matrix. In addition, the row player uses a no-regret algorithm to efficiently learn
A dominant approach to solving large imperfect-information games is Counterfactural Regret Minimization (CFR). In CFR, many regret minimization problems are combined to solve the game. For very large games, abstraction is typically needed to render C