ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting contacts to a monolayer semiconductor

316   0   0.0 ( 0 )
 نشر من قبل Andreas Baumgartner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate superconducting vertical interconnect access (VIA) contacts to a monolayer of molybdenum disulfide (MoS$_2$), a layered semiconductor with highly relevant electronic and optical properties. As a contact material we use MoRe, a superconductor with a high critical magnetic field and high critical temperature. The electron transport is mostly dominated by a single superconductor/normal conductor junction with a clear superconductor gap. In addition, we find MoS$_2$ regions that are strongly coupled to the superconductor, resulting in resonant Andreev tunneling and junction dependent gap characteristics, suggesting a superconducting proximity effect. Magnetoresistance measurements show that the bandstructure and the high intrinsic carrier mobility remain intact in the bulk of the MoS$_2$. This type of VIA contact is applicable to a large variety of layered materials and superconducting contacts, opening up a path to monolayer semiconductors as a platform for superconducting hybrid devices.

قيم البحث

اقرأ أيضاً

We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting wea k link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {mu}s) and dephasing times (1 {mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
Integration of high quality semiconductor-superconductor devices into scalable and CMOS compatible architectures remains an outstanding challenge, currently hindering their practical implementation. Here, we demonstrate growth of InAs nanowires monol ithically integrated on Si inside lateral cavities containing superconducting TiN elements. This technique allows growth of hybrid devices characterized by sharp semiconductor-superconductor interfaces and with alignment along arbitrary crystallographic directions. Electrical characterization at low temperature reveals proximity induced superconductivity in InAs via a transparent interface.
88 - C. Janvier 2015
Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here , we demonstrate the coherent manipulation of a quantum system based on Andreev bound states, which are microscopic quasiparticle states inherent to superconducting weak links. Using a circuit quantum electrodynamics setup we perform single-shot readout of this Andreev qubit. We determine its excited state lifetime and coherence time to be in the microsecond range. Quantum jumps and parity switchings are observed in continuous measurements. In addition to possible quantum information applications, such Andreev qubits are a testbed for the physics of single elementary excitations in superconductors.
We investigate heat circulators where a phase coherent region is contacted by three leads that are either normal- or superconducting. A magnetic field, and potentially the superconducting phases, allow to control the preferential direction of the hea t flow between the three-different temperature-biased contacts. The main goal of this study is to analyze the requirements for heat circulation in non-ideal devices, in particular focusing on sample-to-sample variations. Quite generally, we find that the circulation performance of the devices is good as long as only a few transport channels are involved. We compare the performance of circulators with normalconducting contacts to those with superconducting contacts and find that the circulation coefficient are essentially unchanged.
We study Andreev reflection in a ballistic one-dimensional channel coupled in parallel to a superconductor via a tunnel barrier of finite length $L$. The dependence of the low-energy Andreev reflection probability $R_A$ on $L$ reveals the existence o f a characteristic length scale $xi_N$ beyond which $R_A(L)$ is enhanced up to unity despite the low interfacial transparency. The Andreev reflection enhancement is due to the strong mixing of particle and hole states that builds up in contacts exceeding the coherence length $xi_N$, leading to a small energy gap (minigap) in the density of states of the normal system. The role of the geometry of such hybrid contacts is discussed in the context of the experimental observation of zero-bias Andreev anomalies in the resistance of extended carbon nanotube/superconductor junctions in field effect transistor setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا