ﻻ يوجد ملخص باللغة العربية
We use FIRE-2 simulations to examine 3-D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 Milky Way (MW) and M31-mass galaxies across their formation histories at $z leq 1.5$ ($t_{rm lookback} leq 9.4$ Gyr), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $1$ kpc of the disk midplane is vertically homogeneous to $lesssim 0.008$ dex at all $z leq 1.5$. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $approx -0.01$ dex kpc$^{-1}$ at $z = 1$ ($t_{rm lookback} = 7.8$ Gyr) to $approx -0.03$ dex kpc$^{-1}$ at $z = 0$, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $0.14$ dex at $z = 1$, reducing to $0.05$ dex at $z = 0$. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at $z gtrsim 0.8$ ($t_{rm lookback} gtrsim 6.9$ Gyr). Furthermore, elemental abundances are measurably homogeneous (to $lesssim 0.05$ dex) across a radial range of $Delta R approx 3.5$ kpc at $z gtrsim 1$ and $Delta R approx 1.7$ kpc at $z = 0$. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at $z gtrsim 1$ that evolve to typically Gaussian distributions by $z = 0$. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW.
With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in
Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated
We present the first measurement of the lifetimes of Giant Molecular Clouds (GMCs) in cosmological simulations at $z = 0$, using the Latte suite of FIRE-2 simulations of Milky Way-mass galaxies. We track GMCs with total gas mass $gtrsim 10^5$ M$_odot
We study star formation histories (SFHs) of $simeq500$ dwarf galaxies (stellar mass $M_ast = 10^5 - 10^9,M_odot$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (L
We examine the prevalence, longevity, and causes of planes of satellite dwarf galaxies, as observed in the Local Group. We use 14 Milky Way/Andromeda-(MW/M31) mass host galaxies from the FIRE-2 simulations. We select the 14 most massive satellites by