ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic Gaia surveys from the FIRE cosmological simulations of Milky Way-mass galaxies

169   0   0.0 ( 0 )
 نشر من قبل Robyn Sanderson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky-Way-mass galaxies in a cosmological context, to test the physics of both dark matter and galaxy formation. We present ananke, a framework for generating synthetic phase-space surveys from high-resolution baryonic simulations, and use it to generate a suite of synthetic surveys resembling Gaia DR2 in data structure, magnitude limits, and observational errors. We use three cosmological simulations of Milky-Way-mass galaxies from the Latte suite of the Feedback In Realistic Environments (FIRE) project, which feature self-consistent clustering of star formation in dense molecular clouds and thin stellar/gaseous disks in live cosmological halos with satellite dwarf galaxies and stellar halos. We select three solar viewpoints from each simulation to generate nine synthetic Gaia-like surveys. We sample synthetic stars by assuming each star particle (of mass 7070 $M_{odot}$) represents a single stellar population. At each viewpoint, we compute dust extinction from the simulated gas metallicity distribution and apply a simple error model to produce a synthetic Gaia-like survey that includes both observational properties and a pointer to the generating star particle. We provide the complete simulation snapshot at $z = 0$ for each simulated galaxy. We describe data access points, the data model, and plans for future upgrades. These synthetic surveys provide a tool for the scientific community to test analysis methods and interpret Gaia data.

قيم البحث

اقرأ أيضاً

Stellar streams record the accretion history of their host galaxy. We present a set of simulated streams from disrupted dwarf galaxies in 13 cosmological simulations of Milky Way (MW)-mass galaxies from the FIRE-2 suite at $z=0$, including 7 isolated Milky Way-mass systems and 6 hosts resembling the MW-M31 pair (full dataset at: https://flathub.flatironinstitute.org/sapfire). In total, we identify 106 simulated stellar streams, with no significant differences in the number of streams and masses of their progenitors between the isolated and paired environments. We resolve simulated streams with stellar masses ranging from $sim 5times10^5$ up to $sim 10^{9} M_odot$, similar to the mass range between the Orphan and Sagittarius streams in the MW. We confirm that present-day simulated satellite galaxies are good proxies for stellar stream progenitors, with similar properties including their stellar mass function, velocity dispersion, [Fe/H] and [$alpha$/H] evolution tracks, and orbital distribution with respect to the galactic disk plane. Each progenitors lifetime is marked by several important timescales: its infall, star-formation quenching, and stream-formation times. We show that the ordering of these timescales is different between progenitors with stellar masses higher and lower than $sim 2times10^6 M_odot$. Finally, we show that the main factor controlling the rate of phase-mixing, and therefore fading, of tidal streams from satellite galaxies in MW-mass hosts is non-adiabatic evolution of the host potential. Other factors commonly used to predict phase-mixing timescales, such as progenitor mass and orbital circularity, show virtually no correlation with the number of dynamical times required for a stream to become phase-mixed.
We present the first measurement of the lifetimes of Giant Molecular Clouds (GMCs) in cosmological simulations at $z = 0$, using the Latte suite of FIRE-2 simulations of Milky Way-mass galaxies. We track GMCs with total gas mass $gtrsim 10^5$ M$_odot $ at high spatial ($sim1$ pc), mass ($7100$ M$_{odot}$), and temporal (1 Myr) resolution. Our simulated GMCs are consistent with the distribution of masses for massive GMCs in the Milky Way and nearby galaxies. We find GMC lifetimes of $5-7$ Myr, or 1-2 freefall times, on average, with less than 2$%$ of clouds living longer than 20 Myr. We find decreasing GMC lifetimes with increasing virial parameter, and weakly increasing GMC lifetimes with galactocentric radius, implying that environment affects the evolutionary cycle of GMCs. However, our GMC lifetimes show no systematic dependence on GMC mass or amount of star formation. These results are broadly consistent with inferences from the literature and provide an initial investigation into ultimately understanding the physical processes that govern GMC lifetimes in a cosmological setting.
We apply a semi-analytic galaxy formation model to two high resolution cosmological N-body simulations to investigate analogues of the Milky Way system. We select these according to observed properties of the Milky Way rather than by halo mass as in most previous work. For disk-dominated central galaxies with stellar mass (5--7) x 10d10Msun, the median host halo mass is 1.4 x 10d12Msun, with 1 sigma dispersion in the range [0.86, 3.1] x 10d12Msun, consistent with dynamical measurements of the Milky Way halo mass. For any given halo mass, the probability of hosting a Milky Way system is low, with a maximum of ~20% in haloes of mass ~10d12Msun. The model reproduces the V-band luminosity function and radial profile of the bright (MV < -9) Milky Way satellites. Galaxy formation in low mass haloes is found to be highly stochastic, resulting in an extremely large scatter in the relation between MV (or stellar mass) for satellites and the depth of the subhalo potential well in which they live, as measured by the maximum of the rotation curve, Vmax. We conclude that the too big to fail problem is an artifact of selecting satellites in N-body simulations according to subhalo properties: in 10% of cases we find that three or fewer of the brightest (or most massive) satellites have Vmax > 30 km/s. Our model predicts that around half of the dark matter subhaloes with Vmax > 20 km/s host satellites fainter than MV = -9 and so may be missing from existing surveys.
We introduce the ARTEMIS simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of ~ 2x10^4 Msun/h), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the EAGLE galaxy formation code wi th re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ~ -3, outer slopes of ~ -4 and break radii that are typically ~ 20-40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour and age profiles show mild large-scale gradients, particularly when spherically-averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially-flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.
The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., this issue). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 micron) simultaneously. A high-resolution (R~19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا