ﻻ يوجد ملخص باللغة العربية
Single cell RNA sequencing (scRNA-seq) data makes studying the development of cells possible at unparalleled resolution. Given that many cellular differentiation processes are hierarchical, their scRNA-seq data is expected to be approximately tree-shaped in gene expression space. Inference and representation of this tree-structure in two dimensions is highly desirable for biological interpretation and exploratory analysis. Our two contributions are an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data, and a visualization method respecting the tree-structure. We extract the tree structure by means of a density based minimum spanning tree on a vector quantization of the data and show that it captures biological information well. We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space. We compare to other dimension reduction methods and demonstrate the success of our method experimentally. Our implementation relying on PyTorch and Higra is available at github.com/hci-unihd/DTAE.
Identification and quantification of condition-specific transcripts using RNA-Seq is vital in transcriptomics research. While initial efforts using mathematical or statistical modeling of read counts or per-base exonic signal have been successful, th
Rule-based modeling is a powerful way to model kinetic interactions in biochemical systems. Rules enable a precise encoding of biochemical interactions at the resolution of sites within molecules, but obtaining an integrated global view from sets of
Motivated by applications in systems biology, we seek a probabilistic framework based on Markov processes to represent intracellular processes. We review the formal relationships between different stochastic models referred to in the systems biology
RNA-Seq technology allows for studying the transcriptional state of the cell at an unprecedented level of detail. Beyond quantification of whole-gene expression, it is now possible to disentangle the abundance of individual alternatively spliced tran
Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accur