ﻻ يوجد ملخص باللغة العربية
Many application scenarios call for training a machine learning model among multiple participants. Federated learning (FL) was proposed to enable joint training of a deep learning model using the local data in each party without revealing the data to others. Among various types of FL methods, vertical FL is a category to handle data sources with the same ID space and different feature spaces. However, existing vertical FL methods suffer from limitations such as restrictive neural network structure, slow training speed, and often lack the ability to take advantage of data with unmatched IDs. In this work, we propose an FL method called self-taught federated learning to address the aforementioned issues, which uses unsupervised feature extraction techniques for distributed supervised deep learning tasks. In this method, only latent variables are transmitted to other parties for model training, while privacy is preserved by storing the data and parameters of activations, weights, and biases locally. Extensive experiments are performed to evaluate and demonstrate the validity and efficiency of the proposed method.
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to ta
Federated learning is the distributed machine learning framework that enables collaborative training across multiple parties while ensuring data privacy. Practical adaptation of XGBoost, the state-of-the-art tree boosting framework, to federated lear
Federated learning (FL) has been proposed to allow collaborative training of machine learning (ML) models among multiple parties where each party can keep its data private. In this paradigm, only model updates, such as model weights or gradients, are
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p
Recently, Graph Neural Network (GNN) has achieved remarkable progresses in various real-world tasks on graph data, consisting of node features and the adjacent information between different nodes. High-performance GNN models always depend on both ric