ﻻ يوجد ملخص باللغة العربية
We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy (CFL) condition lets us deploy an adaptive resolution in (retarded-like) time, even for the nonlinear regime. As test cases, we replicate the main features of the gravitational critical behavior and the spacetime structure at null infinity using the Bondi mass and the News function. Additionally, we obtain the global energy conservation for an extreme situation, i.e. in the threshold of the black hole formation. In principle, the calibrated code can be used in conjunction with an ADM 3+1 code to confirm the critical behavior recently reported in the gravitational collapse of a massless scalar field in an asymptotic anti-de Sitter spacetime. For the scenarios studied, the fixed mesh refinement offers improved runtime and results comparable to code without mesh refinement.
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchi
From Einsteins theory we know that besides the electromagnetic spectrum, objects like quasars, active galactic nuclei, pulsars and black holes also generate a physical signal of purely gravitational nature. The actual form of the signal is impossible
It might seem that a choice of a time coordinate in Hamiltonian formulations of general relativity breaks the full four-dimensional diffeomorphism covariance of the theory. This is not the case. We construct explicitly the complete set of gauge gener
We construct explicitly generators of projectable four-dimensional diffeomorphisms and triad rotation gauge symmetries in a model of vacuum gravity where the fundamental dynamical variables in a Palatini formulation are taken to be a lapse, shift, de
We apply the 1+1+2 covariant approach to describe a general static and spherically symmetric relativistic stellar object which contains two interacting fluids. We then use the 1+1+2 equations to derive the corresponding Tolman-Oppenheimer-Volkoff (TO