ترغب بنشر مسار تعليمي؟ اضغط هنا

The post-Herschel view of intrinsic AGN emission: constructing templates for galaxy and AGN emission at IR wavelengths

104   0   0.0 ( 0 )
 نشر من قبل Emmanuel Bernhard
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the star-forming properties of AGN hosts is key to our understanding of galaxy formation and evolution. However, this topic remains debated, partly due to the difficulties in separating the infrared (i.e. 1--1000 $mu$m) emission into AGN and star-forming components. Taking advantage of archival far-infrared data from Herschel, we present a new set of AGN and galaxy infrared templates, and introduce the spectral energy distribution fitting code IRAGNSEP. Both can be used to measure infrared host galaxy properties, free of AGN contamination. To build these, we used a sample of 100 local ($z$ < 0.3), low-to-high luminosity AGNs (i.e. $L_{rm bol}~sim~10^{42--46}~rm erg~s^{-1}$), selected from the 105-month Swift - BAT X-ray survey, which have archival Spitzer - IRS spectra and Herschel photometry. We first built a set of seven galaxy templates using a sample of 55 star-forming galaxies selected via infrared diagnostics. Using these templates, combined with a flexible model for the AGN contribution, we extracted the intrinsic infrared emission of our AGN sample. We further demonstrate that we can reduce the diversity in the intrinsic shapes of AGN spectral energy distributions down to a set of three AGN templates, of which two represent AGN continuum, and one represents silicate emission. Our results indicate that, on average, the contribution of AGNs to the far-infrared ($lambda~gtrsim$ 50 $mu$m) is not as high as suggested by some recent work. We further show that the need for two infrared AGN continuum templates could be related to nuclear obscuration, where one of our templates appears dominated by the emission of the extended polar dust.



قيم البحث

اقرأ أيضاً

We present an intrinsic AGN SED extending from the optical to the submm, derived with a sample of unobscured, optically luminous (vLv(5100)>10^43.5 erg/s) QSOs at z<0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing th e contribution from stars using the 11.3um polycyclic aromatic hydrocarbon (PAH) feature in the QSOs mid-IR spectra; the 1sigma uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20um the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (vLv(5100) or L_X(2-10keV) > 10^43.5 erg/s). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe broadband photometric observation (at lambda<1000um) which can be used in calculating star-formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 Ang is at least a factor of 4 smaller than the total infrared luminosity (L_IR; 8-1000um) of the galaxy. Finally, we examine the implication of our work in statistical studies of star-formation in AGN host galaxies.
We present a comparative analysis of the properties of AGN emitting at radio and X-ray wavelengths. The study is performed on 907 X-ray AGN and 100 radio AGN selected on the CDFS and UDS fields and makes use of new and ancillary data available to the VANDELS collaboration. Our results indicate that the mass of the host galaxy is a fundamental quantity which determines the level of AGN activity at the various wavelengths. Indeed large stellar masses are found to be connected with AGN radio emission, as virtually all radio-active AGN reside within galaxies of M*>10^{10} Msun. Large stellar masses also seem to favour AGN activity in the X-ray, even though X-ray AGN present a mass distribution which is more spread out and with a non-negligible tail at M*<10^{9} Msun. Stellar mass alone is also observed to play a fundamental role in simultaneous radio and X-ray emission: the percentage of AGN active at both wavelengths increases from around 1% of all X-ray AGN residing within hosts of M*<10^{11} Msun to about 13% in more massive galaxies. In the case of radio-selected AGN, such a percentage moves from about 15% to about 45% (but up to 80% in the deepest fields). Neither cosmic epoch, nor radio luminosity, X-ray luminosity, Eddington ratio or star-formation rate of the hosts are found to be connected to an enhanced probability for joint radio+X-ray emission of AGN origin. Furthermore, only a loose relation is observed between X-ray and radio luminosity in those AGN which are simultaneously active at both frequencies.
We investigate radio-mode AGN activity among post-starburst galaxies from the Sloan Digital Sky Survey to determine whether AGN feedback may be responsible for the cessation of star formation. Based on radio morphology and radio-loudness from the FIR ST and NVSS data, we separate objects with radio activity due to an AGN from ongoing residual star formation. Of 513 SDSS galaxies with strong A-star spectra, 12 objects have 21-cm flux density above 1 mJy. These galaxies do not show optical AGN emission lines. Considering that the lifetime of radio emission is much shorter than the typical time-scale of the spectroscopic features of post-starburst galaxies, we conclude that the radio-emitting AGN activity in these objects was triggered after the end of the recent starburst, and thus cannot be an important feedback process to explain the post-starburst phase. The radio luminosities show a positive correlation with total galaxy stellar mass, but not with the mass of recently formed stars. Thus the mechanical power of AGN feedback derived from the radio luminosity is related to old stellar populations dominating the stellar mass, which in turn are related to the masses of central supermassive black holes.
168 - Chris Done 2011
(Abridged) Narrow Line Seyfert 1 (NLS1) galaxies have low mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the EUV. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough ($sim 2.4$) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. However, the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by cool, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self consistent model assuming that the emission thermalises at large radii, but that at smaller radii the gravitational energy is split between powering optically thick Comptonised disc emission (forming the soft X-ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 REJ1034+396, and to the much lower Eddington fraction Broad Line Seyfert 1 PG1048+231. We use these to guide our fits and interpretations of three template spectra made from co-adding multiple sources to track out a sequence of AGN spectra as a function of $L/L_{Edd}$. The new model is publically available within the {sc xspec} spectral fitting package.
103 - Vernesa Smolcic 2016
Understanding how galaxies form in the early universe and their subsequent evolution through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decades, and we are now e ntering an even more fruitful period - a golden age of radio astronomy - with upgraded, and new facilities delivering an order of magnitude increase in sensitivity. An overview of recent developments in radio continuum sky surveys, focusing on the physical properties and cosmic evolution of radio AGN since z~5 is presented here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا