ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of galaxy mass on AGN emission: a view from the VANDELS survey

125   0   0.0 ( 0 )
 نشر من قبل Manuela Magliocchetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparative analysis of the properties of AGN emitting at radio and X-ray wavelengths. The study is performed on 907 X-ray AGN and 100 radio AGN selected on the CDFS and UDS fields and makes use of new and ancillary data available to the VANDELS collaboration. Our results indicate that the mass of the host galaxy is a fundamental quantity which determines the level of AGN activity at the various wavelengths. Indeed large stellar masses are found to be connected with AGN radio emission, as virtually all radio-active AGN reside within galaxies of M*>10^{10} Msun. Large stellar masses also seem to favour AGN activity in the X-ray, even though X-ray AGN present a mass distribution which is more spread out and with a non-negligible tail at M*<10^{9} Msun. Stellar mass alone is also observed to play a fundamental role in simultaneous radio and X-ray emission: the percentage of AGN active at both wavelengths increases from around 1% of all X-ray AGN residing within hosts of M*<10^{11} Msun to about 13% in more massive galaxies. In the case of radio-selected AGN, such a percentage moves from about 15% to about 45% (but up to 80% in the deepest fields). Neither cosmic epoch, nor radio luminosity, X-ray luminosity, Eddington ratio or star-formation rate of the hosts are found to be connected to an enhanced probability for joint radio+X-ray emission of AGN origin. Furthermore, only a loose relation is observed between X-ray and radio luminosity in those AGN which are simultaneously active at both frequencies.



قيم البحث

اقرأ أيضاً

We systematically analyze X-ray variability of active galactic nuclei (AGNs) in the 7~Ms textit{Chandra} Deep Field-South survey. On the longest timescale ($approx~17$ years), we find only weak (if any) dependence of X-ray variability amplitudes on e nergy bands or obscuration. We use four different power spectral density (PSD) models to fit the anti-correlation between normalized excess variance ($sigma^2_{rm nxv}$) and luminosity, and obtain a best-fit power law index $beta=1.16^{+0.05}_{-0.05}$ for the low-frequency part of AGN PSD. We also divide the whole light curves into 4 epochs in order to inspect the dependence of $sigma^2_{rm nxv}$ on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a $beta$ of $sim 1.3$ that is consistent with the above-derived $beta$, which is larger than the frequently-assumed value of $beta=1$. We then investigate the evolution of $sigma^2_{rm nxv}$. No definitive conclusion is reached due to limited source statistics but, if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward large redshifts. We also search for transient events and find 6 notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts $langledot{N}rangle = 1.0^{+1.1}_{-0.7}times 10^{-3}~rm galaxy^{-1}~yr^{-1}$ and a tidal disruption event~(TDE) rate $langledot{N}_{rm TDE}rangle=8.6^{+8.5}_{-4.9}times 10^{-5}~rm galaxy^{-1}~yr^{-1}$ assuming the other four long outbursts to be TDEs.
We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L[0.5-2keV]~10^{39} erg s$^{-1}$), extending ~2 kpc from the active nucleus and filling in the cavity of the HI material. The best fit to the X-ray spectrum requires either a kT~0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the HI gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the AGN-host interaction in NGC 4151 must have occured relatively recently (some 10^4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy $gtrsim$1% of AGN lifetime.
85 - Fabio Fontanot 2021
In this work, we study the evolution of the mass-metallicity relations (MZRs) as predicted by the GAlaxy Evolution and Assembly (GAEA) semi-analytic model. We contrast these predictions with recent results from the VANDELS survey, that allows us to e xpand the accessible redshift range for the stellar MZR up to $zsim3.5$. We complement our study by considering the evolution of the gas-phase MZR in the same redshift range. We show that GAEA is able to reproduce the observed evolution of the $z<3.5$ gas-phase MZR and $z<0.7$ stellar MZR, while it overpredicts the stellar metallicity at $zsim3.5$. Furthermore, GAEA also reproduces the so-called fundamental metallicity relation (FMR) between gas-phase metallicity, stellar mass and star formation rate (SFR). In particular, the gas-phase FMR in GAEA is already in place at $zsim5$ and shows almost no evolution at lower redshift. GAEA predicts the existence of a stellar FMR, that is, however, characterized by a relevant redshift evolution, although its shape follows closely the gas-phase FMR. We also report additional unsolved tensions between model and data: the overall normalization of the predicted MZR agrees with observations only within $sim$0.1 dex; the largest discrepancies are seen at $zsim3.5$ where models tend to slightly overpredict observed metallicities; the slope of the predicted MZR at fixed SFR is too steep below a few ${rm M}_odot {rm yr}^{-1}$. Finally, we provide model predictions for the evolution of the MZRs at higher redshifts, that would be useful in the context of future surveys, like those that will be performed with JWST.
Outflows driven by active galactic nuclei (AGN) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of ki netically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor $m=dot{M}_{rm out}/dot{M}_{rm BH}$, to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that $m$ can be constrained between $200-500$. This parameter corresponds to a bulk flow speed between $4,000-7,000,{rm km,s}^{-1}$ at around 1 kpc, and a thermalized outflow temperature between $10^{8.7}-10^{9},{rm K}$. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows $sim10$ times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.
137 - Stephanie Juneau 2014
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish AGN from purely star-forming galaxies. Yet, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z~0 reference sample built from ~300,000 SDSS galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z~1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal ISM properties out to z~1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies, and may be more important starting at z>2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams, and the MZ relation as a function of emission line luminosity limits, is made publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا