ﻻ يوجد ملخص باللغة العربية
High performance but unverified controllers, e.g., artificial intelligence-based (a.k.a. AI-based) controllers, are widely employed in cyber-physical systems (CPSs) to accomplish complex control missions. However, guaranteeing the safety and reliability of CPSs with this kind of controllers is currently very challenging, which is of vital importance in many real-life safety-critical applications. To cope with this difficulty, we propose in this work a Safe-visor architecture for sandboxing unverified controllers in CPSs operating in noisy environments (a.k.a. stochastic CPSs). The proposed architecture contains a history-based supervisor, which checks inputs from the unverified controller and makes a compromise between functionality and safety of the system, and a safety advisor that provides fallback when the unverified controller endangers the safety of the system. Both the history-based supervisor and the safety advisor are designed based on an approximate probabilistic relation between the original system and its finite abstraction. By employing this architecture, we provide formal probabilistic guarantees on preserving the safety specifications expressed by accepting languages of deterministic finite automata (DFA). Meanwhile, the unverified controllers can still be employed in the control loop even though they are not reliable. We demonstrate the effectiveness of our proposed results by applying them to two (physical) case studies.
We introduce a novel learning-based approach to synthesize safe and robust controllers for autonomous Cyber-Physical Systems and, at the same time, to generate challenging tests. This procedure combines formal methods for model verification with Gene
The distributed cooperative controllers for inverter-based systems rely on communication networks that make them vulnerable to cyber anomalies. In addition, the distortion effects of such anomalies may also propagate throughout inverter-based cyber-p
Assuring the correct behavior of cyber-physical systems requires significant modeling effort, particularly during early stages of the engineering and design process when a system is not yet available for testing or verification of proper behavior. A
For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynami
We present a new method for the automated synthesis of digital controllers with formal safety guarantees for systems with nonlinear dynamics, noisy output measurements, and stochastic disturbances. Our method derives digital controllers such that the