ﻻ يوجد ملخص باللغة العربية
We present a new method for the automated synthesis of digital controllers with formal safety guarantees for systems with nonlinear dynamics, noisy output measurements, and stochastic disturbances. Our method derives digital controllers such that the corresponding closed-loop system, modeled as a sampled-data stochastic control system, satisfies a safety specification with probability above a given threshold. The proposed synthesis method alternates between two steps: generation of a candidate controller pc, and verification of the candidate. pc is found by maximizing a Monte Carlo estimate of the safety probability, and by using a non-validated ODE solver for simulating the system. Such a candidate is therefore sub-optimal but can be generated very rapidly. To rule out unstable candidate controllers, we prove and utilize Lyapunovs indirect method for instability of sampled-data nonlinear systems. In the subsequent verification step, we use a validated solver based on SMT (Satisfiability Modulo Theories) to compute a numerically and statistically valid confidence interval for the safety probability of pc. If the probability so obtained is not above the threshold, we expand the search space for candidates by increasing the controller degree. We evaluate our technique on three case studies: an artificial pancreas model, a powertrain control model, and a quadruple-tank process.
We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID
Modern nonlinear control theory seeks to endow systems with properties such as stability and safety, and has been deployed successfully across various domains. Despite this success, model uncertainty remains a significant challenge in ensuring that m
High performance but unverified controllers, e.g., artificial intelligence-based (a.k.a. AI-based) controllers, are widely employed in cyber-physical systems (CPSs) to accomplish complex control missions. However, guaranteeing the safety and reliabil
We introduce a novel learning-based approach to synthesize safe and robust controllers for autonomous Cyber-Physical Systems and, at the same time, to generate challenging tests. This procedure combines formal methods for model verification with Gene
We present a sound and automated approach to synthesize safe digital feedback controllers for physical plants represented as linear, time invariant models. Models are given as dynamical equations with inputs, evolving over a continuous state space an