ﻻ يوجد ملخص باللغة العربية
Many real-world data comes in the form of graphs, such as social networks and protein structure. To fully utilize the information contained in graph data, a new family of machine learning (ML) models, namely graph neural networks (GNNs), has been introduced. Previous studies have shown that machine learning models are vulnerable to privacy attacks. However, most of the current efforts concentrate on ML models trained on data from the Euclidean space, like images and texts. On the other hand, privacy risks stemming from GNNs remain largely unstudied. In this paper, we fill the gap by performing the first comprehensive analysis of node-level membership inference attacks against GNNs. We systematically define the threat models and propose three node-level membership inference attacks based on an adversarys background knowledge. Our evaluation on three GNN structures and four benchmark datasets shows that GNNs are vulnerable to node-level membership inference even when the adversary has minimal background knowledge. Besides, we show that graph density and feature similarity have a major impact on the attacks success. We further investigate two defense mechanisms and the empirical results indicate that these defenses can reduce the attack performance but with moderate utility loss.
Recently, recommender systems have achieved promising performances and become one of the most widely used web applications. However, recommender systems are often trained on highly sensitive user data, thus potential data leakage from recommender sys
Membership inference attacks seek to infer membership of individual training instances of a model to which an adversary has black-box access through a machine learning-as-a-service API. In providing an in-depth characterization of membership privacy
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-ar
Neural networks are susceptible to data inference attacks such as the model inversion attack and the membership inference attack, where the attacker could infer the reconstruction and the membership of a data sample from the confidence scores predict
Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injec