ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Topological Surface Superconductivity in FeSe$_{0.45}$Te$_{0.55}$

116   0   0.0 ( 0 )
 نشر من قبل Dirk K. Morr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The engineering of Majorana zero modes in topological superconductors, a new paradigm for the realization of topological quantum computing and topology-based devices, has been hampered by the absence of materials with sufficiently large superconducting gaps. Recent experiments, however, have provided enthralling evidence for the existence of topological surface superconductivity in the iron-based superconductor FeSe$_{0.45}$Te$_{0.55}$ possessing a full $s_pm$-wave gap of a few meV. Here, we propose a mechanism for the emergence of topological superconductivity on the surface of FeSe$_{0.45}$Te$_{0.55}$ by demonstrating that the interplay between the $s_pm$-wave symmetry of the superconducting gap, recently observed surface magnetism, and a Rashba spin-orbit interaction gives rise to several topological superconducting phases. Moreover, the proposed mechanism explains a series of experimentally observed hallmarks of topological superconductivity, such as the emergence of Majorana zero modes in the center of vortex cores and at the end of line defects, as well as of chiral Majorana edge modes along certain types of domain walls. We also propose that the spatial distribution of supercurrents near a domain wall is a characteristic signature measurable via a scanning superconducting quantum interference device that can distinguish between chiral Majorana edge modes and trivial in-gap states.

قيم البحث

اقرأ أيضاً

We demonstrate that the differential conductance, $dI/dV$, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe$_{0.45}$Te$_{0.55}$, possesses a series of characteristic features that allow one to extra ct the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related $C_2$-symmetry in the Fourier transformed differential conductance.
FeSe${}_{0.45}$Te${}_{0.55}$ (FeSeTe) has recently emerged as a promising candidate to host topological superconductivity, with a Dirac surface state and signatures of Majorana bound states in vortex cores. However, correlations strongly renormalize the bands compared to electronic structure calculations, and there is no evidence for the expected bulk band inversion. We present here a comprehensive angle resolved photoemission (ARPES) study of FeSeTe as function of photon energies ranging from 15 - 100 eV. We find that although the top of bulk valence band shows essentially no $k_z$ dispersion, its normalized intensity exhibits a periodic variation with $k_z$. We show, using ARPES selection rules, that the intensity oscillation is a signature of band inversion indicating a change in the parity going from $Gamma$ to Z. Thus we provide the first direct evidence for a topologically non-trivial bulk band structure that supports protected surface states.
We report on fabrication of devices integrating FeTe$_{0.55}$Se$_{0.45}$ with other van-der-Waals materials, measuring transport properties as well as tunneling spectra at variable magnetic fields and temperatures down to 35 mK. Transport measurement s are reliable and repeatable, revealing temperature and magnetic field dependence in agreement with prior results, confirming that fabrication processing does not alter bulk properties. However, cross-section scanning transmission microscopy reveals oxidation of the surface, which may explain a lower yield of tunneling device fabrication. We nonetheless observe hard-gap planar tunneling into FeTe$_{0.55}$Se$_{0.45}$ through a MoS$_2$ barrier. Notably, a minimal hard gap of 0.5 meV persists up to a magnetic field of 9 T in the $ab$ plane and 3 T out of plane. This may be the result of very small junction dimensions, or a quantum-limit minimal energy spacing between vortex bound states. We also observed defect assisted tunneling, exhibiting bias-symmetric resonant states which may arise due to resonant Andreev processes.
101 - P. Zhang , P. Richard , N. Xu 2014
We used emph{in-situ} potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tu ne the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe$_{2-x}$Se$_2$ compound.
The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا