ﻻ يوجد ملخص باللغة العربية
We report on fabrication of devices integrating FeTe$_{0.55}$Se$_{0.45}$ with other van-der-Waals materials, measuring transport properties as well as tunneling spectra at variable magnetic fields and temperatures down to 35 mK. Transport measurements are reliable and repeatable, revealing temperature and magnetic field dependence in agreement with prior results, confirming that fabrication processing does not alter bulk properties. However, cross-section scanning transmission microscopy reveals oxidation of the surface, which may explain a lower yield of tunneling device fabrication. We nonetheless observe hard-gap planar tunneling into FeTe$_{0.55}$Se$_{0.45}$ through a MoS$_2$ barrier. Notably, a minimal hard gap of 0.5 meV persists up to a magnetic field of 9 T in the $ab$ plane and 3 T out of plane. This may be the result of very small junction dimensions, or a quantum-limit minimal energy spacing between vortex bound states. We also observed defect assisted tunneling, exhibiting bias-symmetric resonant states which may arise due to resonant Andreev processes.
By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $mathrm{FeTe}_{0.55}mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconducti
The search for the Majorana fermions in condensed matter physics has attracted much attention, partially because they may be used for the fault-tolerant quantum computation. It has been predicted that the Majorana zero mode may exist in the vortex co
We used emph{in-situ} potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tu
Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the con
Caroli-de Gennes-Martricon (CdGM) states were predicted in 1964 as low energy excitations within vortex cores of type-II superconductors. In the quantum limit, namely $T/T_mathrm{c} ll Delta/E_mathrm{F}$, the energy levels of these states were predic