ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure and Energy-Efficient Offloading and Resource Allocation in a NOMA-Based MEC Network

58   0   0.0 ( 0 )
 نشر من قبل Qun Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy efficiency and security are two critical issues for mobile edge computing (MEC) networks. With stochastic task arrivals, time-varying dynamic environment, and passive existing attackers, it is very challenging to offload computation tasks securely and efficiently. In this paper, we study the task offloading and resource allocation problem in a non-orthogonal multiple access (NOMA) assisted MEC network with security and energy efficiency considerations. To tackle the problem, a dynamic secure task offloading and resource allocation algorithm is proposed based on Lyapunov optimization theory. A stochastic non-convex problem is formulated to jointly optimize the local-CPU frequency and transmit power, aiming at maximizing the network energy efficiency, which is defined as the ratio of the long-term average secure rate to the long-term average power consumption of all users. The formulated problem is decomposed into the deterministic sub-problems in each time slot. The optimal local CPU-cycle and the transmit power of each user can be given in the closed-from. Simulation results evaluate the impacts of different parameters on the efficiency metrics and demonstrate that the proposed method can achieve better performance compared with other benchmark methods in terms of energy efficiency.



قيم البحث

اقرأ أيضاً

85 - Han Hu , Weiwei Song , Qun Wang 2021
Mobile edge computing (MEC)-enabled Internet of Things (IoT) networks have been deemed a promising paradigm to support massive energy-constrained and computation-limited IoT devices. IoT with mobility has found tremendous new services in the 5G era a nd the forthcoming 6G eras such as autonomous driving and vehicular communications. However, mobility of IoT devices has not been studied in the sufficient level in the existing works. In this paper, the offloading decision and resource allocation problem is studied with mobility consideration. The long-term average sum service cost of all the mobile IoT devices (MIDs) is minimized by jointly optimizing the CPU-cycle frequencies, the transmit power, and the user association vector of MIDs. An online mobility-aware offloading and resource allocation (OMORA) algorithm is proposed based on Lyapunov optimization and Semi-Definite Programming (SDP). Simulation results demonstrate that our proposed scheme can balance the system service cost and the delay performance, and outperforms other offloading benchmark methods in terms of the system service cost.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi s paper mainly focuses on the hybrid NOMA-MEC system, where multiple users are first grouped into pairs, and users in each pair offload their tasks simultaneously by NOMA, and then a dedicated time duration is scheduled to the more delay-tolerable user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) is applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrate the hybrid SIC scheme which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL) based algorithm is proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimize the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results show that the proposed algorithm converges fast, and the NOMA-MEC scheme outperforms the existing orthogonal multiple access (OMA) scheme.
The combination of non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) can significantly improve the spectrum efficiency beyond the fifth-generation network. In this paper, we mainly focus on energy-efficient resource allocation for a multi-user, multi-BS NOMA assisted MEC network with imperfect channel state information (CSI), in which each user can upload its tasks to multiple base stations (BSs) for remote executions. To minimize the energy consumption, we consider jointly optimizing the task assignment, power allocation and user association. As the main contribution, with imperfect CSI, the optimal closed-form expressions of task assignment and power allocation are analytically derived for the two-BS case. Specifically, the original formulated problem is nonconvex. We first transform the probabilistic problem into a non-probabilistic one. Subsequently, a bilevel programming method is proposed to derive the optimal solution. In addition, by incorporating the matching algorithm with the optimal task and power allocation, we propose a low complexity algorithm to efficiently optimize user association for the multi-user and multi-BS case. Simulations demonstrate that the proposed algorithm can yield much better performance than the conventional OMA scheme but also the identical results with lower complexity from the exhaustive search with the small number of BSs.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi c requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and en ergy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا