ﻻ يوجد ملخص باللغة العربية
We construct empirical models of star-forming galaxy evolution assuming that individual galaxies evolve along well-known scaling relations between stellar mass, gas mass and star formation rate following a simple description of chemical evolution. We test these models by a comparison with observations and with detailed Magneticum high resolution hydrodynamic cosmological simulations. Galaxy star formation rates, stellar masses, gas masses, ages, interstellar medium and stellar metallicities are compared. It is found that these simple lookback models capture many of the crucial aspects of galaxy evolution reasonably well. Their key assumption of a redshift dependent power law relationship between galaxy interstellar medium gas mass and stellar mass is in agreement with the outcome of the complex Magneticum simulations. Star formation rates decline towards lower redshift not because galaxies are running out of gas, but because the fraction of the cold ISM gas, which is capable of producing stars, becomes significantly smaller. Gas accretion rates in both model approaches are of the same order of magnitude. Metallicity in the Magneticum simulations increases with the ratio of stellar mass to gas mass as predicted by the lookback models. The mass metallicity relationships agree and the star formation rate dependence of these relationships is also reproduced. We conclude that these simple models provide a powerful tool for constraining and interpreting more complex models based on cosmological simulations and for population synthesis studies analyzing integrated spectra of stellar populations.
We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techni
We present cosmological zoom-in hydro-dynamical simulations for the formation of disc galaxies, implementing dust evolution and dust promoted cooling of hot gas. We couple an improved version of our previous treatment of dust evolution, which adopts
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation.
High-redshift Lyman-alpha blobs (LABs) are an enigmatic class of objects that have been the subject of numerous observational and theoretical investigations. It is of particular interest to determine the dominant power sources for the copious luminos
Cosmological hydrodynamical simulations are rich tools to understand the build-up of stellar mass and angular momentum in galaxies, but require some level of calibration to observations. We compare predictions at $zsim0$ from the Eagle, Hydrangea, Ho