ﻻ يوجد ملخص باللغة العربية
We extend Homotopy Type Theory with a novel modality that is simultaneously a monad and a comonad. Because this modality induces a non-trivial endomap on every type, it requires a more intricate judgemental structure than previous modal extensions of Homotopy Type Theory. We use this theory to develop an synthetic approach to spectra, where spectra are represented by certain types, and constructions on them by type structure: maps of spectra by ordinary functions, loop spaces by the identity type, and so on. We augment the type theory with a pair of axioms, one which implies that the spectra are stable, and the other which relates synthetic spectra to the ordinary definition of spectra in type theory as $Omega$-spectra. Finally, we show that the type theory is sound and complete for an abstract categorical semantics, in terms of a category-with-families with a weak endomorphism whose functor on contexts is a bireflection, i.e. has a counit an a unit that are a section-retraction pair.
We combine Homotopy Type Theory with axiomatic cohesion, expressing the latter internally with a version of adjoint logic in which the discretization and codiscretization modalities are characterized using a judgmental formalism of crisp variables. T
We introduce a syntactic translation of Goedels System T parametrized by a weak notion of a monad, and prove a corresponding fundamental theorem of logical relation. Our translation structurally corresponds to Gentzens negative translation of classic
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed
We give a new syntax independent definition of the notion of a generalized algebraic theory as an initial object in a category of categories with families (cwfs) with extra structure. To this end we define inductively how to build a valid signature $
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.