ترغب بنشر مسار تعليمي؟ اضغط هنا

A Gentzen-style monadic translation of Godels System T

89   0   0.0 ( 0 )
 نشر من قبل Chuangjie Xu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chuangjie Xu




اسأل ChatGPT حول البحث

We introduce a syntactic translation of Goedels System T parametrized by a weak notion of a monad, and prove a corresponding fundamental theorem of logical relation. Our translation structurally corresponds to Gentzens negative translation of classical logic. By instantiating the monad and the logical relation, we reveal the well-known properties and structures of T-definable functionals including majorizability, continuity and bar recursion. Our development has been formalized in the Agda proof assistant.



قيم البحث

اقرأ أيضاً

Type theories with higher-order subtyping or singleton types are examples of systems where computation rules for variables are affected by type information in the context. A complication for these systems is that bounds declared in the context do not interact well with the logical relation proof of completeness or termination. This paper proposes a natural modification to the type syntax for F-Omega-Sub, adding variables bound to the variable type constructor, thereby separating the computational behavior of the variable from the context. The algorithm for subtyping in F-Omega-Sub can then be given on types without context or kind information. As a consequence, the metatheory follows the general approach for type systems without computational information in the context, including a simple logical relation definition without Kripke-style indexing by context. This new presentation of the system is shown to be equivalent to the traditional presentation without bounds on the variable type constructor.
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed in MSO and is closed under homomorphisms, and for all integers l,k, there exists a *canonical* Datalog program Pi of width (l,k), that is, a Datalog program of width (l,k) which is sound for C (i.e., Pi only derives the goal predicate on a finite structure A if A is in C) and with the property that Pi derives the goal predicate whenever *some* Datalog program of width (l,k) which is sound for C derives the goal predicate. The same characterisations also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results, we show that every class C in GSO whose complement is closed under homomorphisms is a finite union of constraint satisfaction problems (CSPs) of countably categorical structures.
The intersection type assignment system has been designed directly as deductive system for assigning formulae of the implicative and conjunctive fragment of the intuitionistic logic to terms of lambda-calculus. But its relation with the logic is not standard. Between all the logics that have been proposed as its foundation, we consider ISL, which gives a logical interpretation of the intersection by splitting the intuitionistic conjunction into two connectives, with a local and global behaviour respectively, being the intersection the local one. We think ISL is a logic interesting by itself, and in order to support this claim we give a sequent calculus formulation of it, and we prove that it enjoys the cut elimination property.
Normalization fails in type theory with an impredicative universe of propositions and a proof-irrelevant propositional equality. The counterexample to normalization is adapted from Girards counterexample against normalization of System F equipped wit h a decider for type equality. It refutes Werners normalization conjecture [LMCS 2008].
104 - Mary Southern 2021
We present a system called Adelfa that provides mechanized support for reasoning about specifications developed in the Edinburgh Logical Framework or LF. Underlying Adelfa is a new logic named L_LF. Typing judgements in LF are represented by atomic f ormulas in L_LF and quantification is permitted over contexts and terms that appear in such formulas. Contexts, which constitute type assignments to uniquely named variables that are modelled using the technical device of nominal constants, are characterized in L_LF by context schemas that describe their inductive structure. We present these formulas and an associated semantics before sketching a proof system for constructing arguments that are sound with respect to the semantics. We then outline the realization of this proof system in Adelfa and illustrate its use through a few example proof developments. We conclude the paper by relating Adelfa to existing systems for reasoning about LF specifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا