ﻻ يوجد ملخص باللغة العربية
$beta-Ga_2O_3$ has drawn significant attention for power electronics and deep ultraviolet (UV) photodetectors owing to its wide bandgap of ~ 4.4 - 4.9 eV and high electric breakdown strength ~7-8 MV/cm. Growth of $beta-Ga_2O_3$ epitaxial thin films with high growth rate has been recently reported using low pressure chemical vapor deposition (LPCVD) technique. In this work, we have investigated the effect of growth temperature on $beta-Ga_2O_3$ films grown on c-plane sapphire substrates using LPCVD. We performed growths by varying temperatures from 800$^{deg}$C to 950$^{deg}$C while keeping all other growth parameters (Ar/O$_2$ gas flow rates, growth pressure, and Gallium precursor to substrate distance) constant. Optical, structural, and surface characterizations are performed to determine the bandgap, phase purity, crystal orientation, and crystalline quality of the grown thin films. Amorphous islands of $Ga_2O_3$ are observed at growth temperature of 800$^{deg}$C while continuous and crystalline (-201) oriented $beta-Ga_2O_3$ thin films are achieved for growth temperatures of 850$^{deg}$C to 950$^{deg}$C. Crystallinity of the films is found to improve with increase in growth temperature with a minimum rocking full width at half maximum of 1.52$^{deg}$ in sample grown at 925$^{deg}$C. For all the samples grown at and above 875$^{deg}$C, transmittance measurements revealed an optical bandgap of ~4.77-4.80 eV with high growth rate of ~6 ${mu}$m/hr.
Uniform single layer graphene was grown on single-crystal Ir films a few nanometers thick which were prepared by pulsed laser deposition on sapphire wafers. These graphene layers have a single crystallographic orientation and a very low density of de
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have b
A technique has been developed for depositing diamond crystals on the endfaces of optical fibers and capturing the fluorescence generated by optically active defects in the diamond into the fiber. This letter details the diamond growth on optical fib
Transition metal dichalcogenides (TMDs) have recently attracted attention due to their interesting electronic and optical properties. Fabrication of these materials in a reliable and facile method is important for future applications, as are methods
We examine different cases of heterostructures consisting of WS2 monolayers grown by chemical vapor deposition (CVD) as the optically active material. We show that the degree of valley polarization of WS2 is considerably influenced by the material ty