ترغب بنشر مسار تعليمي؟ اضغط هنا

Cuspy and fractured black hole shadows in a toy model with axisymmetry

64   0   0.0 ( 0 )
 نشر من قبل Wei-Liang Qian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cuspy shadow was first reported for hairy rotating black holes, whose metrics deviate significantly from the Kerr one. The non-smooth edge of the shadow is attributed to a transition between different branches of unstable but bounded orbits, known as the fundamental photon orbits, which end up at the light rings. In searching for a minimal theoretical setup to reproduce such a salient feature, in this work, we devise a toy model with axisymmetry, a slowly rotating Kerr black hole enveloped by a thin slowly rotating dark matter shell. Despite its simplicity, we show rich structures regarding fundamental photon orbits explicitly in such a system. We observe two disconnected branches of unstable spherical photon orbits, and the jump between them gives rise to a pair of cusps in the resultant black hole shadow. Besides the cuspy shadow, we explore other intriguing phenomena when the Maxwell construction cannot be established. We find that it is possible to have an incomplete arc of Einstein rings and a fractured shadow. The potential astrophysical significance of the corresponding findings is addressed.



قيم البحث

اقرأ أيضاً

This paper summarises an investigation of chaos in a toy potential which mimics much of the behaviour observed for the more realistic triaxial generalisations of the Dehnen potentials, which have been used to model cuspy triaxial galaxies both with a nd without a supermassive black hole. The potential is the sum of an anisotropic harmonic oscillator potential, V_o=(1/2)*(a^{2}x^{2}+b^{2}y^{2}+c^{2}z^{2}), and a spherical Plummer potential, V_o=-M_{BH}/(r^{2}+e^{2})^{1/2} with r^{2}=x^{2}+y^{2}+z^{2}. Attention focuses on three issues related to the properties of ensembles of chaotic orbits which impact on chaotic mixing and the possibility of constructing self-consistent equilibria: (1) What fraction of the orbits are chaotic? (2) How sensitive are the chaotic orbits, i.e., how large are their largest (short time) Lyapunov exponents? (3) To what extent is the motion of chaotic orbits impeded by Arnold webs, i.e.,, how `sticky are the chaotic orbits? These questions are explored as functions of the axis ratio a:b:c, black hole mass M_BH, softening length e, and energy E with the aims of understanding how the manifestations of chaos depend on the shape of the system and why the black hole generates chaos. The simplicity of the model makes it amenable to a perturbative analysis. That it mimics the behaviour of more complicated potentials suggests that much of this behaviour should be generic.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
176 - Masaru Siino 2019
Causal concept for the general black hole shadow is investigated, instead of the photon sphere. We define several `wandering null geodesics as complete null geodesics accompanied by repetitive conjugate points, which would correspond to null geodesic s on the photon sphere in Schwarzschild spacetime. We also define a `wandering set, that is, a set of totally wandering null geodesics as a counterpart of the photon sphere, and moreover, a truncated wandering null geodesic to symbolically discuss its formation. Then we examine the existence of a wandering null geodesic in general black hole spacetimes mainly in terms of Weyl focusing. We will see the essence of the black hole shadow is not the stationary cycling of the photon orbits which is the concept only available in a stationary spacetime, but their accumulation. A wandering null geodesic implies that this accumulation will be occur somewhere in an asymptotically flat spacetime.
We have studied the spacetime of a Kerr black hole immersed in Melvin magnetic field, and found not only unstable light rings could exist, but also stable light rings could exist. Both the prograde and retrograde unstable light rings radiuses increas e with the magnetic field parameter $B$, but it is the opposite for stable light rings. The existence of unstable, stable light rings depend on both the rotation parameter $a$ and the magnetic field parameter $B$. For a certain $a$, there are both the prograde and retroprade unstable (stable) light rings when $B$ is less than a critical value $B_{c}$ of retrograde light ring. In this case, the shadows of Melvin-Kerr black hole have two gray regions on both sides of the middle main shadow, which correspond to the prograde and retrograde stable photon orbits. The photons in stable orbits are always moving around Melvin-Kerr black hole, they cant enter the black hole or escape to infinity. As $B$ continues to increase, there is only the prograde unstable (stable) light ring. In this case, the gray region only emerges in the life of the main shadow, which corresponds to the prograde stable photon orbits. The absence of the retrograde unstable (stable) light rings makes the Melvin-Kerr black hole shadow an half-panoramic (equatorial) shadow. When $B$ is bigger than $B_{C}$ of prograde light ring, neither prograde nor retroprade unstable (stable) light rings exist. In this case, the shadow of Melvin-Kerr black hole has no gray region for stable photon orbits, and becomes a panoramic (equatorial) shadow. In addition, there also exist some self-similar fractal structures in the shadow of Melvin-Kerr black hole arising from the chaotic motion of photon.
In this work, motivated by the fact that higher-dimensional theories predict the existence of black holes which differ from their four-dimensional counterpart, we analyse the geodesics and black hole shadow cast by a general non-extremal five-dimensi onal black hole. The system under consideration corresponds to the Chong-Cvetiv{c}-Lu-Pope (Phys. Rev.Lett.{bf 95}, 161301 (2005)), which has the Myers--Perry black hole as a limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا