ترغب بنشر مسار تعليمي؟ اضغط هنا

Kerr Black hole shadows in Melvin magnetic field with stable photon orbits

74   0   0.0 ( 0 )
 نشر من قبل Mingzhi Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the spacetime of a Kerr black hole immersed in Melvin magnetic field, and found not only unstable light rings could exist, but also stable light rings could exist. Both the prograde and retrograde unstable light rings radiuses increase with the magnetic field parameter $B$, but it is the opposite for stable light rings. The existence of unstable, stable light rings depend on both the rotation parameter $a$ and the magnetic field parameter $B$. For a certain $a$, there are both the prograde and retroprade unstable (stable) light rings when $B$ is less than a critical value $B_{c}$ of retrograde light ring. In this case, the shadows of Melvin-Kerr black hole have two gray regions on both sides of the middle main shadow, which correspond to the prograde and retrograde stable photon orbits. The photons in stable orbits are always moving around Melvin-Kerr black hole, they cant enter the black hole or escape to infinity. As $B$ continues to increase, there is only the prograde unstable (stable) light ring. In this case, the gray region only emerges in the life of the main shadow, which corresponds to the prograde stable photon orbits. The absence of the retrograde unstable (stable) light rings makes the Melvin-Kerr black hole shadow an half-panoramic (equatorial) shadow. When $B$ is bigger than $B_{C}$ of prograde light ring, neither prograde nor retroprade unstable (stable) light rings exist. In this case, the shadow of Melvin-Kerr black hole has no gray region for stable photon orbits, and becomes a panoramic (equatorial) shadow. In addition, there also exist some self-similar fractal structures in the shadow of Melvin-Kerr black hole arising from the chaotic motion of photon.

قيم البحث

اقرأ أيضاً

In this work, taking the QED effect into account, we investigate the shadows of the Kerr black holes immersed in uniform magnetic fields through the numerical backward ray-tracing method. We introduce a dimensionless parameter $Lambda$ to characteriz e the strength of magnetic fields and studied the influence of magnetic fields on the Kerr black hole shadows for various spins of the black holes and inclination angles of the observers. In particular, we find that the photon hairs appear near the left edge of the shadow in the presence of magnetic fields. The photon hairs may be served as a signature of the magnetic fields. We notice that the photon hairs become more evident when the strength of magnetic fields or the spin of the black hole becomes larger. In addition, we study the deformation of the shadows by bringing in quantitative parameters that can describe the position and shape of the shadow edge.
We consider the motion of massive and massless particles in a five-dimensional spacetime with a compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime. We show the existence of circular orbits and rev eal their sequences and stability. In the asymptotic region, stable circular orbits always exist, which implies that four-dimensional gravity is more dominant because of the small extra-dimensional space. In the vicinity of a black hole, they do not exist because the effect of compactification is no longer effective. We also clarify the dependence of the sequences of circular orbits on the size of the extra-dimensional space by determining the appearance of the innermost stable circular orbit and the last circular orbit (i.e., the unstable photon circular orbit).
We investigate the spherical photon orbits in near-extremal Kerr spacetimes. We show that the spherical photon orbits with impact parameters in a finite range converge on the event horizon. Furthermore, we demonstrate that the Weyl curvature near the horizon does not generate the shear of a congruence of such light rays. Because of this property, a series of images produced by the light orbiting around a near-extremal Kerr black hole several times can be observable.
We investigate the shadows and photon spheres of the four-dimensional Gauss-Bonnet black hole with the static and infalling spherical accretions. We show that for both cases, the shadow and photon sphere are always present. The radii of the shadow an d photon sphere are independent of the profiles of accretion for a fixed Gauss-Bonnet constant, implying that the shadow is a signature of the spacetime geometry and it is hardly influenced by accretion in this case. Because of the Doppler effect, the shadow of the infalling accretion is found to be darker than that of the static one. We also investigate the effect of the Gauss-Bonnet constant on the shadow and photon sphere, and find that the larger the Gauss-Bonnet constant is, the smaller the radii of the shadow and photon sphere will be. In particular, the observed specific intensity increases with the increasing of the Gauss-Bonnet constant.
We present firstly the equation of motion for the photon coupled to a special bumblebee vector field in a Kerr black hole spacetime and find that the propagation of light depends on its polarization due to the birefringence phenomenon. The dependence of black hole shadow on the lights polarization is dominated by the rotation of black hole. In the non-rotating case, we find that the black hole shadow is independent of the polarization of light. However, the status is changed in the rotating case, in which the black hole shadow depends on the lights polarization and the coupling between bumblebee vector field and electromagnetic field. These features of black hole shadow casted by polarized lights could help us to understand the bumblebee vector field with Lorentz symmetry breaking and its interaction with electromagnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا