ﻻ يوجد ملخص باللغة العربية
Despite a cost-effective option in practical engineering, Reynolds-averaged Navier-Stokes simulations are facing the ever-growing demand for more accurate turbulence models. Recently, emerging machine learning techniques are making promising impact in turbulence modeling, but in their infancy for widespread industrial adoption. Towards this end, this work proposes a universal, inherently interpretable machine learning framework of turbulence modeling, which mainly consists of two parallel machine-learning-based modules to respectively infer the integrity basis and closure coefficients. At every phase of the model development, both data representing the evolution dynamics of turbulence and domain-knowledge representing prior physical considerations are properly fed and reasonably converted into modeling knowledge. Thus, the developed model is both data- and knowledge-driven. Specifically, a version with pre-constrained integrity basis is provided to demonstrate detailedly how to integrate domain-knowledge, how to design a fair and robust training strategy, and how to evaluate the data-driven model. Plain neural network and residual neural network as the building blocks in each module are compared. Emphases are made on three-fold: (i) a compact input feature parameterizing the newly-proposed turbulent timescale is introduced to release nonunique mappings between conventional input arguments and output Reynolds stress; (ii) the realizability limiter is developed to overcome under-constraint of modeled stress; and (iii) constraints of fairness and noisy-sensitivity are first included in the training procedure. In such endeavors, an invariant, realizable, unbiased and robust data-driven turbulence model is achieved, and does gain good generalization across channel flows at different Reynolds numbers and duct flows with various aspect ratios.
Thermal plumes are the energy containing eddy motions that carry heat and momentum in a convective boundary layer. The detailed understanding of their structure is of fundamental interest for a range of applications, from wall-bounded engineering flo
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows. The scaling demonstrates the important role played by the wall shear stress fluctuatio
Despite their well-known limitations, RANS models remain the most commonly employed tool for modeling turbulent flows in engineering practice. RANS models are predicated on the solution of the RANS equations, but these equations involve an unclosed t
Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the importa