ترغب بنشر مسار تعليمي؟ اضغط هنا

CMS-LSTM: Context-Embedding and Multi-Scale Spatiotemporal-Expression LSTM for Video Prediction

355   0   0.0 ( 0 )
 نشر من قبل Zenghao Chai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Extracting variation and spatiotemporal features via limited frames remains as an unsolved and challenging problem in video prediction. Inherent uncertainty among consecutive frames exacerbates the difficulty in long-term prediction. To tackle the problem, we focus on capturing context correlations and multi-scale spatiotemporal flows, then propose CMS-LSTM by integrating two effective and lightweight blocks, namely Context-Embedding (CE) and Spatiotemporal-Expression (SE) block, into ConvLSTM backbone. CE block is designed for abundant context interactions, while SE block focuses on multi-scale spatiotemporal expression in hidden states. The newly introduced blocks also facilitate other spatiotemporal models (e.g., PredRNN, SA-ConvLSTM) to produce representative implicit features for video prediction. Qualitative and quantitative experiments demonstrate the effectiveness and flexibility of our proposed method. We use fewer parameters to reach markedly state-of-the-art results on Moving MNIST and TaxiBJ datasets in numbers of metrics. All source code is available at https://github.com/czh-98/CMS-LSTM.



قيم البحث

اقرأ أيضاً

Multi-agent motion prediction is challenging because it aims to foresee the future trajectories of multiple agents (textit{e.g.} pedestrians) simultaneously in a complicated scene. Existing work addressed this challenge by either learning social spat ial interactions represented by the positions of a group of pedestrians, while ignoring their temporal coherence (textit{i.e.} dependencies between different long trajectories), or by understanding the complicated scene layout (textit{e.g.} scene segmentation) to ensure safe navigation. However, unlike previous work that isolated the spatial interaction, temporal coherence, and scene layout, this paper designs a new mechanism, textit{i.e.}, Dynamic and Static Context-aware Motion Predictor (DSCMP), to integrates these rich information into the long-short-term-memory (LSTM). It has three appealing benefits. (1) DSCMP models the dynamic interactions between agents by learning both their spatial positions and temporal coherence, as well as understanding the contextual scene layout.(2) Different from previous LSTM models that predict motions by propagating hidden features frame by frame, limiting the capacity to learn correlations between long trajectories, we carefully design a differentiable queue mechanism in DSCMP, which is able to explicitly memorize and learn the correlations between long trajectories. (3) DSCMP captures the context of scene by inferring latent variable, which enables multimodal predictions with meaningful semantic scene layout. Extensive experiments show that DSCMP outperforms state-of-the-art methods by large margins, such as 9.05% and 7.62% relative improvements on the ETH-UCY and SDD datasets respectively.
149 - Siwei Liu 2021
To overcome the limitations of convolutional neural network in the process of facial expression recognition, a facial expression recognition model Capsule-LSTM based on video frame sequence is proposed. This model is composed of three networks includ ingcapsule encoders, capsule decoders and LSTM network. The capsule encoder extracts the spatial information of facial expressions in video frames. Capsule decoder reconstructs the images to optimize the network. LSTM extracts the temporal information between video frames and analyzes the differences in expression changes between frames. The experimental results from the MMI dataset show that the Capsule-LSTM model proposed in this paper can effectively improve the accuracy of video expression recognition.
Pedestrian trajectory prediction for surveillance video is one of the important research topics in the field of computer vision and a key technology of intelligent surveillance systems. Social relationship among pedestrians is a key factor influencin g pedestrian walking patterns but was mostly ignored in the literature. Pedestrians with different social relationships play different roles in the motion decision of target pedestrian. Motivated by this idea, we propose a Social Relationship Attention LSTM (SRA-LSTM) model to predict future trajectories. We design a social relationship encoder to obtain the representation of their social relationship through the relative position between each pair of pedestrians. Afterwards, the social relationship feature and latent movements are adopted to acquire the social relationship attention of this pair of pedestrians. Social interaction modeling is achieved by utilizing social relationship attention to aggregate movement information from neighbor pedestrians. Experimental results on two public walking pedestrian video datasets (ETH and UCY), our model achieves superior performance compared with state-of-the-art methods. Contrast experiments with other attention methods also demonstrate the effectiveness of social relationship attention.
Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible net work architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.
We propose a self-supervised learning method to jointly reason about spatial and temporal context for video recognition. Recent self-supervised approaches have used spatial context [9, 34] as well as temporal coherency [32] but a combination of the t wo requires extensive preprocessing such as tracking objects through millions of video frames [59] or computing optical flow to determine frame regions with high motion [30]. We propose to combine spatial and temporal context in one self-supervised framework without any heavy preprocessing. We divide multiple video frames into grids of patches and train a network to solve jigsaw puzzles on these patches from multiple frames. So the network is trained to correctly identify the position of a patch within a video frame as well as the position of a patch over time. We also propose a novel permutation strategy that outperforms random permutations while significantly reducing computational and memory constraints. We use our trained network for transfer learning tasks such as video activity recognition and demonstrate the strength of our approach on two benchmark video action recognition datasets without using a single frame from these datasets for unsupervised pretraining of our proposed video jigsaw network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا